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FOREWORD

This techrical report is submitted in accordance with the require-
ments of Contract F336i5-70-C-1162, Exhibit B, Sequence No, B002.
The work documented herein was accomplished under Froject 7629,
Task 03 during the periods of July 1971 to August 1971 and January 1973
to April 1973 under the cognizance of Mr. Lea Krautmann, Project
Engineer, AFAL/NVT-1, Air Force Avionics Laboratory, Wright-
Patterson Air Force Base, Ohio.

Portions of this report have been documented elsewhere by the
Aerospace Technology Division, Applied Research Laboratories (ARLy,
The University of Texas at Austin, Austin, Texas, as ARL reports,
and other portions dealing with the funcamentals of ballistics are based
upon material found in the References. This report provides the Air
Force and Industry with a comprehensive treatment of exterior ballistics,
as applied to airborne applications, under one cover.

This report was submitted by the author April 1973 and is assigned
the originator's report number UT/ARL-TR-73-15.

This revort has been reviewed and is anrroved for publication.

v N M. HANSEN
Acting Deputy Director
Navigation & Weapon Delivery Division
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ABSTRACT

Methods of exterior ballistics applicable to utilization in modern
airborne fire control system design are documented herein, The fund-
amentals of exterior ballistics are included,along with a description of
currently used ballistic and aerodynamic notations, a discussion of the
limitations of the semi-empirical aerodynamic force and moment system,
and methods of preparing aerodynamic data for use in trajectory compu-
tation. Tutorial material is provided to give the reader an understanding
of windage jump caused by the complicated angular motion of a spinning
projectile. The Siacci method is described and means for improving its
accuracy are developed. Six-degree-of-freedom equations are derived
in several different formulations for exploratory studies and digital com-
puter computations, and the development of approximate equaticns for
rapid evaluation of trajectory tables is included. Methods for calculating
trajectory initial conditions are provided for shells fired from a turreted,
gatling gun in a maneuvering aircraft, and the problems of ballistic and
kinematic prediction are discussed briefly, The material covered he -ein
should provide personnel in the Air Force and in industry with sufficient
knowledge of exterior ballistics for advanced fire control system design.
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SECTION I

INTRODUCTION

For the design of a modern airborne gun fire control system, a
knowledge of exterior ballistics is a necessity. The complicated motion
of a spinning projectile, fired crosswind from a gun in a high-speed
aircraft, and the accurate prediction of such motion requires careful

study,

These statements are borne out by consideration of the magnitudes
of aerodynamic forces and moments acting upon a projectile in flight, It
is almost incredible that the aerodynamic drag on the 20-mm, M56
round fired at sea level at 4000 ft/sec is about 20 1b, and that the left
force at right angles to the velocity vector is about 9 1b if the angle of
attack of the projectile is 3 deg. The 20-mm round itself weighs only
0.22 1b. The effect of the lift, and other smaller forces, is to deflect
the motion of the projectile away from its initial direction of motion, and,
as arule of thumb, this deflection, called the windage jump, is one milli-
radian (mr) per initial degree of angle of attack. In the example above,
the windage jump is 3 mr and one might ask how it is that a 9-1b force
acting at right angles to the velocity vector of a 0.22-1b projectile pro-
dures only a 3-mil deflection. The answer is that the lift force preces-

ses with the projectile about tL.e velocity vector and nearly cancels out,

That a careful study of the six-degree-of-freedom motion of 2 pro-
jectile is necessary should now be apparent. The deviations from straight~
line motion of a spinning projectile in flight are due to complicated inter-
actions of aerodynamic forces and moments, gravity, and gyroscopic
effects. For accurate prediction of projectile motion, these effects

must be taken into account,

This report is limited to an investigation of the motion of a spin-
ning projectile fired from a rifle. Finned missiles and rockets are not

included.
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E’ Whereas accurate six-degree-of-freedom projectile trajectories
can be calculated directly from Newton's laws of motion, computations
of this type are currently not believed feasible in airborne fire control
applications because exce~sive computer time is required. Careful
study, however, leads to the selection of appropriate algorithms which
yield trajectory data within the error budget alloted to exterior ballistics

calculations, and which can be utilized in airborne applications.

Because of the 9 or 10-year lapse of interest by the Air Force in

exterior ballistics, it is felt that a presentation of the fundamentals of

the subject is not out of place in this report. New personnel in the Air
Force and in industry are not likely to be knowledgeable in this subject,
nor is the necessary literature readily available. The best available
book on exterior ballistics is the one by McShane, Kelley, and Reno
(Ref. 1), but this book is not well suited to current ne=ds. Other useful
information is to be found in repoirts written mostly in the 1950's and
earlier which may be hard to ob'tain‘ such as in Refs. 2 through 20,
Most of this work is based upon the early work of Fowler, Gallop, Lock,
and Richmond (Ref. 21),and upon the works of Nielsen and Synge (Ref.
22), and of Maple and Synge (Ref. 23). A useful book on fire control is
NAVORD Report 1493 (Ref. 24), and the book by Davis, Follin, and
Blitzer (Ref. 25) provides information applicable to the exterior tal-
listics of shells. The notation of Ref. 25 is somewhat different than
used elsewhere, but the book provides very good insight into projectile
motion. After burning, the motion of a spin-stabilized rocket is the
same as that of a shell. Two other books on exterior balliscics are the

ones by Moulton (Ref. 26) and Bliss (Ref, 27).

The aerodynamic force and moment system in current use is sem:
empirical. Whereas the functional form of the forces and moments may
be partially derived from considerations of dimensional analysis and
projectile symmetry, aerodynamic theory has failed to produce accurate
expressions for these forces and moments. Aerodynamic data used in

trajectory computation is acquired from wind tunnel measurements and

PR M «
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free-flight tests. The arguments of dimensional analysis and symmetry
which are used :o develop the aerodynamic force and moment system in
use are presented in Section II, Discussion of the measurement of aero-
dynamic data is excluded, Also included in Section II is a comparison of
the ballistic K notation and the aerodynamic C notation, physical identifi-
cation of the various aerodynamic forces and moments, a discussion of

weaknesses in the force and moment system, and modeling of aerodynamic

data for computer utilization.

Section IIl is tutorial and should provide the reader with the neces-
sary background to understand the nature of the angular motion of a spin-
ning projectile, An understanding of the fundamental causes of windage

jump follows from knowledge of projectile angular motion,

Equations of motion suitable for computation of trajectories on a
computer are given in Se~tion IV, Included are a matrix formulation
and an Euler angle development of the six-degree-of-freedom equations.
Also included is a set of a.proximate equations which are useful for

rapid generation of traj:ctory data when computer time is a factor.

The basic Siacci method is presented in Section V, along with
methods to improve its accuracy. The Siacci method is a good candi-
date for onboard utilization because it provides an approximate closed

form solution to the trajectory computation problem.

Equations for initial conditions for trajectory calculations are de-
rived in Section VI. These equations apply to a turreted, gatling gun
fired from a moving aircraft, They are possibly more complicated than
necessary, but they may be simplified as any application permits, A
brief discussion of the problems imposed by kinematic prediction is also

included in this section,
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SECTION I

AERODYNAMIC FORCES AND MOMENTS

1, General

The aerodynamic forces and moments acting on a projectile in
flight result from frictional forces and pressure distributions over the
projectile body which in turn result from the motion of the projectile

through the air mass. A complete and accurate sclution for projectile

motion would therefore involve solution of the equations of fluid flow
around the projectile. In practical applications, this is beyond the cap-
abilities of any available digital computer, but fortunately this is not
necessary. The alternative is a semi-empirical approach whereby aero-
dynamic forces and moments are measured in wind tunnels and by means
of free-flight tests. This aerodynamic data is modeled in a form suit-
able for computer use and employed in trajectory calculations, The

means by which this data is modeled are treated in this section,

Dimensional analysis is a study .t certain mathematical relation-
ships, explainable in terms of the d a1ensionality of measurements,
which exist between physically mewsurable quantities. FPhysically mea-
surable quantities ha ¢ dimensions such as mass (M}, length (L), Time(T),
or velocity (LT-I), and physical laws are independent of these units of
measure, Certain restrictions are imposed by nature upon the functional
form of mathematical relations describing such laws, and dimensional
analysis identifies these restrictions. In the semi-empirical develop-
ment of the aerodynamic force and moment system applicable to a spin-
ning shell, arguments based upon dimensional analysis and symmetry

play an important role,

A shell possesses two types of symmetry, namely rotational and
mirror. An object has rotational symmetry if ''it looks the same"
when it has been rotated turough a given angle about a particular axis.
Similarly, an object has mirror symmetry if it looks the same under

certain conditions when viewed in a mirror. Dimensional analysis and
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symmetry are used to derive the functional form of the aerodynamic
force arnd moment system in terms of the aerodynamic or ballistic coef-

ficients.

Since the approach used to mathematically describe aerodynamic
forces and moments is semi-empirical, it has certain weaknesses.

These weaknesses are discussed briefly,

The approach herein is to first mathematically model the force and
moment system and then to identify the various forces and moments., One
might expect the analysis to proceed in the other direction, but use of
this systematic approach uncovers unsuspected forces and moments.

The systzmatic approach should not trouble the reader since he will al-
ready be aware of the existence of certain forces such as the drag, the
lift, the Magnus force, the Magnus moment, etc., and their appearance

in the equations to be developed will be no surprise.

This section also coniains a comparison of the different notations
which are in current use for the description of the aerodynamic forces
and moments which act upon a projectile in tree flight. The terminology
used in the literature to describe the aerodynarnics of the operational
20-mm, M56 round is the K, or ballistic, notation, whereas that used to
describe new 20-mm, 25-mm, and 30-mm rounds under development is
the C, or aerodynamic, notation., Much of the old ballistics literature
which employs the K notation is still of interest, but the new C notation
is used by wind tunnel and free-~flight test range personnel in the col-
lection of new ballistics data, Familiarity with both notations is manda-

tory.

Choice of an appropriate notation for ballistics is subjective. The
C notation is somewhat awkward in use in mathematical developments,
although it does exhibit a lucidness of meaning which is absent in the K
notation, The two systems of notation are mathematically equivalent,
and the K notation is used throughout this report, since most of the lit-
erature upon which this report is based is written in terms of the K

notation,




2. Dimensional Analysis

. The subject of dimensional analysis is an important part of the
basic theory of aerodynamics, and since it is well documented (see, for
example, Refs. 1, 28, and 29), it will not be the purpose of this section
to present a detailed account of the subject. Rather, results derived

from the theory will be applied to the problem at hand.

Ifa, B, ..., ware physically measurable quantities (with dimen-

sions) which satisfy an equation which represents a physical law, such

as

¢(a9 By ¢-0s w) = 0

this relation should also be satisfied if the units of measure ofa, B, ..., w
are changed (e.g., from grams, centimeters, and seconds to pounds,
feet, and hours). This is reasonable, since one would not expect the
functional form of ¢ to change under such a transformation. A theorem
of dimensional analysis, known as the Buckingham [i - theorem, follows
from this assertion. Crudely put, the theorem states that the relation

é{a, By+..,w) = 0 can be replaced by another dimensionless relation

tb(wl,wz, e ey ‘I'I'n_m)-_- 0

where n is the number of parameters in the set of measurable quantities
a, Ps +-+» @, and m is the number of fundamental dimensions (pounds,
feet, seconds, etc.). The T fori=1, 2,..., n-m, are dimensionless

products of the measurable quantities of the form

One would expect intuitively the existence of a function such as .
The nature of a physical law is independent of the units of measure by

which it is described, and a function such as { should be unaffected by
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changes in units, Since the products ™ (fori=1, 2,..., n-m,are
dimensionless, they do not change value with changes in units and it
follows that i is unaffected by such changes. The function ¢ is

essentially a rearrangement of .

As an example of the use of the Euckingham Il -theorem, consider

the motion of a body with acceleration, a, and initial velocity, v. The

body is observed to move a distance, s, in time, t, and this motion is
described, of course, by the iormula

(s,v,a,t) = s -vl:--l—a.t2 =0
¢ 2

But suppose, ior the sake of argument, that this formula is not known,
and that the object of an experiment is to discover the functional form
of ¢. This can be done by varying v and a in some systematic manner
and by measuring s as a function of t, Now, there are four measurable
quantities, s, v, a, and t, and two fundamental dimensions, length, L,
and time, T, and, according to the Buckingham [l - theorem, there are

two dimensionless products, ™ and e These are

. = sa

1 2
v

. = 2t
2 v

sa at \ _
(Fov)-

which describes the motion of the bedy in question, It is obvious that a

g functicn of two parameters is simpler than a function of four parameters,

and so it is easier to fit § to the data than to fit ¢. It is found that
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That ¢ is equivalent to ¢ may be proven by multiplying ¢ through by a/v?'.
In general, The Buckingham [1-theorem is used to reduce the number of
independent parameters and thereby simplify formulae representing
physical laws.,

In the present application, the measurable quantities which describe

the motion of a projectile through the air and their units are as follows:

Components of projectile v:lociiy u L/T
Components of projectile angular R

velocity w !
Air density p M/L3
Viscosity of the air gy M/LT
Speed of sound in air Ve L/T
Projectile diameter d L
Force on the projectile F ML/TZ

There is a total of n = 11 measurable quantities (three each for tand o),
a total of m = 3 fundamental dimensions (M, L, and T), and it follows
that there should be n-m = 8 unique dimensionless products. With u

instead ¢l u,, they are as follows:

1’
___Z_—F Dimensionless force
pd u2
M= \;1 Mach number
s
Re = pud Reynolds number
Ha




wld
v=— Dimensionless spin
92 Y3
- and - Components of cross velocity
w?d w3d
1; and —— Components of cross angular

velocity

Thus, there is a dimensionless relation which is a function of these
2
dimensionless products. If this relation is solved for F/pd"'uz, an

equation of the form

u, u, w,d w,d
F = pd2u2K<M,R v, =, 3,2 3 )
e a u u u

is obtained in which the function K is dimensionless.

Although it was stated that the components of u are among the

measurable quantities, u is usec herein instead of u The principal

1‘
references for this development are Refs, i, 3, and 10, In Refs. ] and
10, u, is used, whereas u is used in Ref, 3. The arguments of dimen-

1
sional analysis are in no way affected b this choice, and while the use

of ) is advantageous for some purposes, the use of u is more common,

This development ignores the fact that the aerodynamic force can
be resolved in three orthogonal directions, There are actually three
relations such as the one above, and there are also three equations for

the aerodynamic moment of the form

32 2 U3
G=pdu K'(M,Re,v, =,

2
—_—

' u u

u u w,d w,d

u

in which K and K' are known as aerodynamic or ballistic coefficients.

It will be shown in the following sections that the components of F and G
can be represented as sums of expressions similar to those above con-

taining dimensionless functions which are also known as aerodynamic

W St AR N S ST AT ~— - o
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coefficients. This will foilow from arguments applicable to projectile

symmetry,

3. Rotational Symmetry

In the preceding subsection, dimensional analysis was employed
to ascertain information as to the nature of the functional form of the
aerodynamic forces and moments which act upon a projectile in free
flight, In this subsection and the next, more information of the same
type will be obtained by examinaticn of the properties of symmetry of
a projectile, Rotational symmetry will be treated in this subsection

and mirror symmetry in the next (Refs. 1, 3, 8, 10, 22, and 23).

In vague terms, a projectile is described as being rouad. What is
meant, of course, is tha. the appearance of the projectile is unchanged
by a rotation about its longitudinal axis. It follows under rather general
assumptions as to surface finish, etc., that aerodynamic forces and
moments are also unchanged by such a rotation. A projectile with these
properties is said to possess rotational symmetry and these properties
may be exploited to gain additional information as to the nature of the

aerodynamic forces ana moments.

It is assumed that the projectile in question has an angle, 6, of
rotational symmetry, where 0 < 6 < v, and that aerodynamic forces and
moments are unaffected by rotating the projectile through the angle 6.
It is noted in passing that the analysis to follow is applicable not only to

shell, but to missiles with three or more symmetrically located fins.

It is necessary to define a coordinate system and parameters
needed in the development. Aerodynamic forces and moments are de-
fined with respect to a right-handed, rectangular, missile-fixed X
X5 Xz coordinate system with the origin at the center of mass of the
projectile, and with the ) axis directed toward the nose along the
longitudinal axis. The X, and X4 axis directions are fixed in the projec-
tile. FProjectile velocity, angular velocity, aerodynamic force, and
aerodynamic moment are represented by symbols a, E;, F, and E;‘, re-

spectively, and components of these vectors along a desigrated axis are

10




denoted by the subscript denoting that axis (e.g., u, is the component

* 1
Lo of u along xl).
= In the development of expressions for aerodynamic forces and
moments, it is convenient to use a complex number notation. The com-~
plex number notation provides a convenient way of designating directions
of aerodynamic forces and moments, and it is useful in exploiting rota-

tional and mirror symmetry. The X5 X plane is taken to be the com-

3
plex plane, with X4 the imaginary axis. Let

u, + iu3
A= — (Cross velocity) (1)
(w2+im3)d
p=——m (Cross angular velocity) (2)
f= I:"2 + iF3 (Cross force) (3)
g = G2 + iG3 {Cross moment) (4)
2

From the results of the preceding section, it follows that F /pd u
and f/pd 4% are functions of the Mach number, M, and Reynolds number.
Re’ the dimensionless spin, v, and also of \, X\, u, and i, where a bar
over a symbol denotes the complex conjugate. It is observed in passing
that the notation employed here differs slightly from that of Refs. 1, 8,

2.2

and 10 1n wh1ch u, replaces u in Eqs. (1) and (2} and in the raftius F /pd u

1
and f/pd u? . This in no way affects the anaiysis to follow and leads to

the definition of aerodynamic coefficients consistent with current usage.

At this point, an approximation is made. Since usually %and o
are a_most parallel to Xy (the nose of the projectile nearly points along

the direction of motion), it follows that

R A I Ty P
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and it is reasonable to expand the aerodynamic forces in Taylor's series

Lisad Ly L amae 0y radou

expansions in \, X\, p, and ;I containing only constant and first order

terms, i.e.,

dzlz = a tb Atb,p +B X +b,u (5)
pd u

f - -
d22=a.2+cl)s+c2p.+d1)\+dzp. (6)
pd u

Since Fl is real, the right side of the first equation is real, The coef-

ficients a, bl’ etc.,, are functions of M, Re’ and v, and for the present
are assumed to be independent of A, X\, p, and p. A different interpreta-

tion will be given later and this requirement will be relaxed, somewhat.

Forces F1 and f result from the cross velocity, \, and the cross

angular velocity, u, and any changes in X\ and p will cause changes in
Fl and f, Rotational symmetry will be exploited by rotating \ and y,
without change in magnitude, through the angle of rotational symmetry,
0. This will not change Fl’ but it will induce a similar rotation of f,

and it is equivalent to rotating the projectile through an angle, -6.

If { is a vector in the complex xZ, % . plane, it can be written as

3
Lt =r elY (7)

If { is subjected to a positive rotation through the angle 6 about the X,
axis, it is transformed into

i(y+6)
re

;I

or

[T
u
[T

(8)

12
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Hence, rotation of \ and u through § results in the following transforma-

M AN

tions:
A= aet® (9)
pt o= petd (10)
fr= ferd (11)
and
F! = F, (12)

where a prime denotes parameters associated with the new positions of
A and u. The truth of the equation for f' follows from rotational sym-
metry. The orientation of f' with respect to \' and p' is the same as
that of f with respect to A\ and u. It follows that Egs. (5) and (6) must be
satisfied by F'!, {', \', and u', and so

FI
1 o
pdz 5= = a, b M +bpu' +b N +bu (13)
——£-|—-—=a.+c)\'+c t+d N +dp’
R A U (14)

Substitution of Eqs. (9) through (12) for \', pn', {f', and F, shows that
q g (] 1

Fl id i0 i0 16
- .. - - == -i
pdzuz = a; ¥+bhe " tbue " +bhe tboue
i6 .
fe'? _ i0 90, ,— -6,  — -if
55 = a2+c1)\e + Cop e +dl)\e +d2pe

13
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and comparison of these relations with Eqs. (5) and (6) reveals that
igy _
bl(l -e ) =0
b2 (1 i e19> =0

a, (1 - e-ie)= 0

and

Fl
=22z =2 (15)
pdzuZ 1

f = N

Completely analogous arguments apply to the aerodynamic moments and

hence

GI
= 17)
2 eI (
pd u
hd'z-_— ‘C3)s+(‘4p, (18)
14
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The expressions above were derived for a system of coordinates
fixed in the projectile. Actually, they are valid if the X, and x4 axes
are allowed to rotate with respect to the projectile, or vice versa. To

. * k% } )
prove this statement, suppose that an X0 Xy0 Xg system is defined such

* *
that X, coincides with X, but the angle between x, and X, is &, where ¢

may be a function of time (Fig. 1}. In the X9 Xg system, the vector {

may be written
i
L =re Y
. * % . < .
whereas in the X0 Xg system, its representation is

¢t = r et (VFe)

so the transformation equation between the two systems is

= get?
Then

£* ='fei¢

g* = gej¢

A= el

p¥ = pel

Obviously Fl and G1 are independent of coordinate systems, and multi-
plying Eqs. (16) and (18) through by e '? yields

£ = c X* +c *
—p 22 1 ¢
_g_ *
pd3u2 = c3x + 4t

15
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Thus, the force and moment equations are valid in the X0 X5 X system.,

3
This is an important simplification,

4. Mi:ror Symmetry

One might suppose that if the image of a projectile as seen in a
mirror were real, its motion would be governed by the same laws of
phvsics as those which determine the motion of the projectile itself, Tf,
in adaition, the projectile possesses mirror symmetry, as will be de-
fined, it should be possible to infer the equations of motion of the ""image
projectile" in terms of those of the projectile itself, By this process,
additional information can be gained concerning the aerodynamic forces

and moments (Refs. 1 and 18).

The definition of mirror symmetry is as follows (Ref. 1). A pro-
jectile possesses mirror symmetry if there is a plane, which contains
the longitudinal axis of the projectile, such that, if each point of the
projectile is moved to the point on the opposite side of, .nd equidistant

from, the plane, then the projectile exactly covers itself.

It is assumed that the projectile in question possesses a plane of

mirror symmetry, in which case the x. axis must be in tha’ plane, and

1

it is also convenient to define the x, axis as being in that plane,

Consider the following ''thought experiment' (Fig, 2) in which a
projectile is fired past a mirror. It is arranged so that the projectile
plane of mirror symmetry is parallel to the mirror at a given instant
of time when observations of the projectile and its image are made. One
can choose to imagine the surface of the mirror and the plane of mirror
symmetry are coincident but this is not actually necessary. It will be
supposed that U and o represent the motion of the projectile whereas
o' and o represent that of the image. Similarly, Fand G represent thc
aerodynamic force and moment, respectively, acting on the projectile,

whereas F'' and G'are associated with the image.

Since x_. and x.2 lie in the plane of mirror symmetry and x_, is per-

1

pendicular to it, it follows that x'1 and x'Z

3

are parallel to x1 and X5

17
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respectively, and that xé is measured in the direction opposite to X3»

where x'l, x'z, x'3 is the coordinate system associated with the image.
Expressions for the components of f‘, a', 3', and o' in the X
X5 Xy coordinate system are required in terms of the components of
f, a, i-f, and o, The linear motions of the projectile and its image
are the same in the 1~ and 2-directions, and so are the forces which

cause them; in the 3-direction, the motions and forces are opposite.

Hence
1 -— 1 -
17N Fl =%
t - 1 o
u! = uZ F2 = F2
t = o vt = o
uy = -uj Fy = -Fy

On the other hand, the angular motions and moments are opposite in

the 1- and 2-directions and are the same in the 3-direction, so

S B Gl = -G
w, = -w, G, = -G,
0y = o, Gy = G,

It follows that

Fi = F (19)

1= Fl,+iFy=F,-iF, = f (20)

G'1 = -Gr1 (21)

g' = G'Z+iGé=-GZ+iG3=-g (22)
19
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A= = =\ (22)

H' = = = ~-u (24)
wid wld
o= = - = -y (25)

Expressions developed in the preceding section for the aerodynamic

forces and moments contain coefficients €y €y etc., which are functions
of M, R, and v. The values of M and R are unaffected by reflection

through the plane of mirror symmetry, wherPas v changes sign. Accord-

ingly, for the projectile, we write

Fy

-gz—z-= a, (v) (26)
pd u

f

— 2 2
pd u

cl(v) A+ cz(v)p (27)

C'1
pd3u2

e, (v) (28)

——-&—pd:;uz = C3(V))\ + C4(v)p_ (29)

and for its image,
Fl
=2 0 (30)

pd u

___%:_Z__ - cl(w)xn + CZ(V')F' (31)
pd u

20
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v
E ﬂ
&
E
Gl
a
4 —5 - e, (v!) (32)
s pd u
,
] —f5— = (' oy (v (33)
4 pd’u
i Substitution of Eqs. (19) through (25) into Egs. (30) througk (33) yields
Fl
___z_z__ = al(_v) (34)
5 pd u
f — — -
——5— = ¢, (-vI\ - c,y(~vly (35)
nd u
-G,
—y—— = el(-v) (36)
; pdu
: —f— = c4l-vIX = c4{-v)p (37)
- pd a1
Comparison of this set with Eqs. (26) through (29) leads to the con-
: clusion that
: a,(-v) = a,(v) (38)
el(-v) = -el(v) (39)
E1(‘1') = ¢, (v) (40)
; cyl-v) = -c,(v) (41)
33(-v) = ~c3(v) (42)

: Tyl-v) = e yv) (43)
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Evidently a,, the real parts of ¢, and Cyr and the imaginary parts of

1’ 1
<, and c, are even functions of v, whereas e ‘he imaginary parts of
< and Cyr and the real parts of <, and cyare odd functions of v.

5. The Ballistic K Notation

In the last three subsections, arguments of dimensional analysis

and symmetry were used to gain insight into the functional form of the
aerodynamic foices and moments acting on a projectile in flight, It
was found that the aerodynamic forces and moments can be represented

by equations of the form

22
Fl-pd u-a,
. 2 2
F2+1F3=pd u [clx+c2p]
_ 132
Gl-pdue1

. 3.2
G2+ 1G3 = pdTu [03)\ + C4p]

where
u, + iu
= 2 3
u
_ (wz + 1w3)d
K= 1
_ wld
Vv =
u

and where the dimensionless coefficients 215y Gy etc,, are functions
of M, Re’ and v, and satisfy Egs. (38) through (43) of the last subsection.
The only restriction imposed upon the velidity of these eguations is that
the first-order Taylor's series expansions in X\, N, p, and E are adequate,
and higher order terms are negligible. For the moment, the truth of

this hypothesis is assumed so that the K notation may be introduced.

In the equations above, it is convenient to replace the coefficients

as <y Cy etc., by a new set of coefficients in which each term is

22
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divided into its real and imaginary parts, and in which all coefficients
are even functions of v(e.g., if a(v) is odd and vb(v) = a(v), then b(v)

is even), The equations above are written as

22
17‘1 = -pdu Kpa (44)
P+ iF, = pa2u?l| -k + vk h H oKy p + K| (45)
2tiF3=p Kn F xF T Esfn
3 2
G, = -pd u"vK, (46)
G, +iG, = d3u2[-vK -iK ,x +|-K +ivK | (47)
2 3= P T M H W VOexTH

where tle K's are aerodynamic coefficients and are functions of M, Re'
and v and are even inyv. The K notation is known as the ballistic
notation, Signs were chosen so all the K's are positive under normal

conditions, but experience has shown that KT is usually negative,

Separation of real and imaginary parts yields the following

equations:

2 2
F,=-pd uKNu2 - pd v.vKFu3

2
+ d3 K - d3u ¢ (48)
pd uwvKypw, - p Ksu)3
P, = -pd 2K, u, +pdZuvK
Py = -pd uKyug+pd uvKpu,
+pd uvK ey + aSuKew (49)
pd uvKypoy tpd uKgw,

3 3
G, = -ed uvKqu, + pd uKMu3

4 4
-pd uKpjw, - pd uvKyqpws (50)
G, = - d3 Kou, - d3 K, u
3 T TPA UvRplz T PE UBMT2
- d4uK w, + d4uK w (51)
P g3 TP XTY2

23




R

WAL T T

s

6. Physical Identification of Forces and Moments

Each term in Egs. (44) through (47) bears a name and a physical
interpretation. Nomenclature is given in Table I, The axial drag,
-deuZKDA, is obviously the component along the projectile axis of
symmetry of the aerodynamic motion-retarding force, whereas the
spin decelerating mnoment, -pd3u2vKA, is the frictional moment which

arises from the spin, w,, and which tends to damp w

1’ 1°
The normal force, -deuZKN)\, is perpendicular to the projectile
longitudinal axis (Fig. 3), and is in the direction opposite to the cross

velocity, . From the definition of \ it follows that
AN = sin® 6

where § is the yaw angle, and \u is the component of projectile velocity
normal to the projectile longitudinal axis., The plane of yaw is the
plane containing -1;, A\u, and the nrojectile longitudinal axis, so the

normal force is in the plane of yaw.

R is the vector sum of the normal force and the axial drag (Fig. 3).
Resolution of R into components perpendicular and parallel to I yields

the lift, L, and drag, D, respectively, where
L = pd%a’K sin 6 152)

D = -pa’u’Ky (53)

These two forces are equivalent to the normal force and the axial drag,
and are more convenient for calcuiational purposes. It follows from
the definitions that

KL=KNc056-KDA (54)

. 2
KD= KN sin” § + KDA cos § (55)

24
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2 2
-pdu KDA

-deuLKNX

ipd%a VK

2 2
pd u vKXFp

3.2
'pd u VKA

3.2
-pd u vKTX

2
-ipd'uZKMX

- pd3u %&Hp

idequK

TETUI AT ST g o

Table I

e e g cie e

Ballistic Nomenclature

xTH

25

Axial drag

Normal force

Magnus force

Cross force due to cross spin

Magnus cross force due to
cross spin

Spin-decelerating moment

Magnus moment

Overturning moment

Damping moment

Magnus cross torque due to
cross spin
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Figure 3

Forces in the Plane of Yaw
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The lift and drag are usually used in trajectory computations rather

£ than the normal force and the axial drag.

The overturning moment, -ipd3u2KM}\, is the torque which re-

aeaan
2L

& sults from the action of the normal force,and its direction is that of

AR

-i\. It is perpendicular to the plane of yaw and is out of the page in

RN gt

Fig, 3 (not shown). For a spin-stabilized shell, the center of pressure
of the normal force is usually ahead (toward the nose) of the center of
mass, and the overturning moment usually acts to increase the yaw

4 angle, 6.

The Magnus force, ipdzuzv KFX, is perpendicular to the plane of
yaw and is into the page in Fig. 3 (not shown). It results from the pro-

jectile spin about the longitudinal axis.

The Magnus moment, -pd3u2v K.\, is the torque which results
from the action of the Magnus force. Its direction is the same as that

oif the normal force provided KT is positive,

The cross force due to cross spin, :i.pdzu2 Ksp., results from the
component of cross velocity, i, as the name implies, Its direction is
that of ip, and is perpendicular to p and the projectile longitudinal
axis. The cross force due to cross spin is physically small and is
assumed to have negligible influence on projectile motion, Its presence

will be ignored in trajectory calculations,

The damping moment, -pd3u2 KHp, is the torque which results
from the action of the cross force due to cross spin., Its direction is
opposite to that of u, and its action is to damp the cross angular velocity.

It has an important influence upon projectile motion,

The Magnus cross force due to cross spin, pdzuzv KXFp., has

negligible influence upon projectile metion and is ignored.

2
Likewise, the Magnus cross torque due to cross spin, ipd3u“KXTu.
which is the moment associated with the Magnus cross force due to

{ cross spin, is negligible,

27
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The reason for retaining the cross force due to cross spin, ‘he
Magnus cross force due to cross spin, and the Magnus cross torque
due to cross spin in the analysis is for logical consistency. If these
terms wer: deleted, a shift of the projectile center of mass would lead
to a logical contradiction. Otherwise, these terms could be excluded
from further consideration. The effect of a shift in center-of-mass

location is treated in the following subsection.

7. Center-of-Mass Location

Different versions of a particular shell (e.g., HEI, AP, etc.)
often have the same external shape, but have different center-of-mass
locations, In order that the same aerodynamic data can be used for all
versions of a projectile, it is necessary to have appropriate formulae
for handling a shift in the center of mass. Such relations are derived

in this subsection.

Aerodynamic forces and momenrnis act, respectively, through and
about the center of mass of a projectile, and it follows that a shift in
the center-of-mass locat.on will produce a different projectile motion,
On the othier hand, it is clear that aerodynamic rressures and frictional
forces are dependent only on the exterior surface of the projectile and
its motion relative to the air, and do not depead upon the center-of-

mass location. These facts are used to derive the required formulae,

At a given instant of time, it is assumed that 'f‘, 5, H, and p are
known for a given projectile, If the center of mass is moved forward
a distance r along the longitudinal axis to a new position, and if primes
denote all parameters defined in a new x‘l, x'Z, x'3 coordinate system,
which is parallel to the old system but with its origin at the new center-

of-mass position, then, with respect to the new system

Ffr=F
(‘3:

0
Q
'
"
ol
X
ko

1]
"
Q
+
”

a

> rF3) + x3(G3—rF2)
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= xlu1 + x?‘(u2 + rw3) + X, (u3 - rwz)

Axial components of F and G are unchanged, so Kpa and K, are in-
dependent of center-of-mass position,

In terms of complex numbers, the transverse components be-

come

u! + iu!

2 3 .
- = -
A= N\ - ihp

1 TR\
‘_(w2+1w3)d _
ptz—"— = =y

f'=F'2+1F'3=f

. I
g Gr'2 + 1G'3 = g -ihdf
where & = r/d (h is r measured in calibers). It is assumed u' = u since

the difference is negligible. The transverse force and moment equa-

tions for the new syscem, Eqgs. (16) and (18), become

£
ST TN e
]
- 1 t
pd3u2 = c37\ + c_[lp.'

Then
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cl(x 1hp)+c2p--——2—2—-pd - _c1h+c2p
T v _ g-ihdf _ .
ca(h-ihp) + chp = _LT_pd3u = c3x te,n 1h(clk + czp)

and it follows from a comparison of the coefficients of \ and p that

c! =¢

! 1 1

|
. .
cz--cz-i-xhcI
| - -1
c3-c3 1hc1

. 2
¢ - - -
Cy = C4 1h(c2 c3)+h <,

Expressions for the new coefficients in terms of the old may be derived

by use of Egs. (45) and (47). They are:

Kba = ¥pa Kh = Ky
1 - - -
K\ = Ky K, Ky ~hKy
1 - ] - -
KL = Kp K = Kp-hK
e ) 2
Ky = Kg-hK) Kl = Ky-h(Kg + Ky ) + hPKy
2
- - ] -— -
Kip = Kyp-hKp Kyp = Kyp-h(Ky p HK o +h K

8. Weaknesses of the Aerodynamic Force and Moment System

The aerodynamic system of forces and moments which is described
hereia suffers from certain weaknesses, There are at least three areas
where one can find fault, namely in arguments based upon projectile
symmetry, in the Taylor's series assumption, and the projectile past

history., These will be discussed in turn.

"oran w
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The assumption that every projectile possesses perfect rotational
and mirror symmetry is obviously incorrect. This is a physical im-

possibility., One would expect slight deviations from rotational sym-

metry, and rifling marks on a shell weaken the assumption of mirror-
symmetry. On the other hand, this is not a very serious problem and,
3 in practice, such deviations from the ideal should produce negligible

' error on the average. These effects probably give rise to a round-to-
round dispersion which may even be desirable. The effect of slight con-

figurational asvmmetries is treated in Ref. 13.

The error introduced by the assumption that aerodynamic forces
and moments can be represented by a first-order Taylor's series is
more important. The Taylor's series assumption implies that the
aerodynamic forces and monfents are continuous functions with all de-
rivatives, but the characteristics of fluid flow tend to discount this
assumption. Instantaneous transitions in flow are observed, such as
a breaking away of the flow from a particular location near the nose of
the projectile as the yaw angle increases. This suggests a discontinuous
nature for aerodynamic forces and moments. Also, the assumption

that forces and moments are linear in \ is violated in practice.

There is, fortunately, a way around these difficulties. A close
examination of the arguments of symmetry reveals that there is no
contradiction if the aerodynamic coefficients (the K's) are allowed to
vary with products of the form X, Ay, Ap, and pp . These products
are invariant under rotation of coordinates about the projectile longi-
tudinal axis and so are the aercdynamic coefficients. Measurements,
in fact, show a variation of the aerodynamic coefficients with
AN = sinzé, but no significant variation with the three other products.
It is, accordingly, convenient to drop the Taylor's series assumption,
but to retain the equations derived from it as a convenient notation in
which the aerodynamic coefficients are allowed to vary with sin’ 6.
Should the need arise, additional correction terms which possess the

appropriate symmetry may be added.
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The assumption that aerodynamic forces and moments depend only

on velocity, ff, and angular velocity, 3, is subject to question, A pro-
jectile may conceivably reach particular values of u and © by means
of a different history of motion. In this instance, the flow pattern of
the air around the projectile and the resulting aerodynamic forces and

moments may be different.

Aerodynamic forces and moments are dependent upon the pattern
of flow of the air mass past a projectile whereas the pattern of flow is
in turn a function of the history of motion of the projectile. Presumably,
the past history of projectile motion can be reconstructed from knowl-
edge of U and o and all time derivatives of u and » at a given instant,
If this is so, it follows that the pattern of flow, and hence the aerody-
namic forces and moments, are functions of U and » and all time deriva-
tives of u and w. Projectile acceleration and angular acceleration are
included in the generalized force system developed in Ref. 10, This

system contains the following terms:

f:pdzuz{—KN+ivKF)\+[vKXF+iKs ’
Qld
- i i A
P Ena IV ERa M
| Qld
g =pd u? [ -vKp - 1Kt {~KH+1vKXT n
Qld
+ ‘-VKTA-lKMA ML — N
Qld
+ -KHA+ WKXTA plti— p } {57)
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1. is the component of the angular velocity of the x coordinate

1
system in the x

r¥20 %3
1 direction, and new ballistic coefficients bear the addi-
tional subscript A for acceleration, These equations differ from those
of Ref, 10 in that u replaces .

Reasonable assumptions as to the size of the acceleration coef-
ficients (Ref, 10) lead to the conclusion that they were all negligible
except for KMA' In fact, an approximate solution of the projectile equa-
tions of motion reveals that free-flight test range measurements for Ky
actually yield Ky - KMA rather than K There is no way to separate
KH and KMA in such measurements,

In conclusion, it should be remarked that these weaknesses in the
development do not necessarily imply that ballistics calculations are of
insufficient accuracy to be useful., The point is, rather, that ballistics
calculations may not be as accurate as one might expect if one is un-

aware of the weaknesses.

9. The Aerodynamic Notation

As an aid to the free exchange of information between the aero-
dynamicist and the ballistician, aerodynamic notation has been adapted
to projectiles with rotational and mirror symmetry (Refs, 18, 19, and
20). The orthogonal right-handed coordinate system usually employed
by the aerodynamicist is a system fixed in the aircraft or missile with
the X axis 2long a principal axis of inertia (the longitudinal axis) and
the Y axis parallel to the span of the principal lifting surface {(out the
right wing)., Components of the aerodynamic force and moment in this

system are

I . | )
X = 5pV scX L= 5pV Sdcl
N R,
Y = 5pV SCy M = >p VSdC
1 2 1 2
7Z = = _
5P V'SC, N = spVSdC
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where X, Y, and Z are components of force, and L, M, and N are
components of moment., V is the projectile speed, S is a reference
area, and d is a reference length., Only one refercnce length is used
for missiles, contrary to standard usage {or aircraft, lu the present
treatment, the reference length, d, is the projectile diameter and the

reference area is

Standard notation for components of velocity and angular velocity in the
X, Y, and Z directions are, respectively, u, v, and w, and p, q, and r.
The orientation of the velocity V in the X,Y,Z coordinate system is de-
fined by the angle of attack, a, and the angle of sideslip, §, where a is
measured about the Y axis and B is a rotation about the Z axis, For
smell angles,

v

and =7

a =

<€

Nomenclature for the drag and lift forces is
1 2
Drag = 5 pVv SCD

Lift

1 2
—Z pV SCLaa
and that for the spin deceleration, or damping-in-roll, is

ovisa P4 ¢

L = 2V Tip

1

2

The normal coefficients C_,, C,, C , and C_ are assumed to be
Y Z m n

functions of a, 8, p, q, r, of time derivatives a, p, q, and r, and are
expanded in first-order Taylor's series in terms of these variables.
The linear force and moment coefficients which have counterparts in

the K unotation are defined by the following relations:
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Cy = ~CypbPtCyrav ~“wpav "oyt 2
pd pd ad
t* Cypa 37 ~ Cvpg 2V 2
pd  &d pd  §d°
¥ Cype B S2- i, To-ds
Ypa 2V 2 Yp§ 2V 73
4V
- c +C qd C ad +C i(_li
Cz = - %z zq 2V " 7Za 2V 2q 42
pd pd rd
tCupp TV P ~Czpr 2v 2
+ C . .Bd;. _é_(.i_ C 29_ rdz
zpd 2V 2V T YzZpr 2V 2
Cow = Ca®4+c & ¢ .84, ¢ a2
a mq 2V ma 2V mq 4VZ
pd pd rd
* Cmpp 2V Bt cmpr 2 2
; b . Pdpd o opd id
s mpp 2V 2V mpt 2V o2
4V
c =c p+c_ I8 v B +C £d®
n B nr 2V “np 2 nr 2
4V
pd pd qd
*Capa 2V ¢t Cupq 2V IV
pd  ad a4 sa°
+C + P 3
npa 2V 2V npg 2V 4V2
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Terms which have been left out of these expansions are .liminated by
the same arguments of symmetry used in the development of the K

notation, so if is convenient to ignore them here.

The notation herein differs somewhat from that of the references,

and indeed the notation is noi in ag. .ement between references. The
nomenclature herein has been chonsen so that definition of coefficients,
particula.ly signs, are in agreement with those of Arnold Engineering

Development Center. This is discussed below,

The aerodynamic coefficients above are sometimes referred to

as aesrodynamic derivatives; for example, a notation such as

CYpa = 3pA/2V 58

is often seen, This notation is strictly correct only if CY 1s indeed a

linear function of {pd/2V) and of a.

The Y axis was deiined as being parallel to the span of the princi-
pal liiting surface for a missile which has such a surface. For a mis-
s sile with an angle, 8, of roiational symmetry, there may be no such
4 unique surface, and for a shell, 6§ can be any angle. The Y axis direc-

tion is not uniquely defined,

if it is assumed that the projectile has 90-deg rotational symmetry
i (6 = 900), thic symmetry can be expivited by means of two coordinate
systems, e.g., I, Y, Z and X', Y!', Z' differing by a rotation of 90 deg
* 3 aboat the X axis. It follows that the equations above are valid for both

systems and that

Fy' = T &' =G
» 2 =R G, Y%
q' = r a' =-B

r' =-q g =a
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~1e relations between forces, moments, angles, and angular rates de-
fined in the two coordinate systems. Utilization of these relations re-
veals, 10or example, that

C = C

Za Yp

Table II containr, a list of all such relations. Because of the lack of

unique Y and Z axis directions, subscripts Y and Z are often replaced

o e e i TR RSN DR T I RN e T oA RAI 5 0 WM b o 5 wro hen s

by the symbol N (for normal} and m and n are replaced by the symbol
M. This notation is also included in Table II, and is called the aero-

ballistic notation in Ref, 19.

10. Comparison of Ballistic and Aerodynamic Notations

To compare ballistic and aerodynamic nomenclature, it is con-

venient to use complex number notation. It follows from Table II that

CY + iCZ =
- e . d
pd | _ic (q+ir)
- CNa -i Sy CNpaJ (g +ia) [——-—ZV CNpq i Nq] 5V
[ pd ] (£§+ia)d pd G (_;14,1;)(12 (58)
- LCNo, YT CNp&_ ZV T127 TWpg T TNg| 42
Cm + 1Cn =
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Table II

E quivalent Aerodynamic Coefficients

npa

npq

npa

C
npq
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Also, it is evident that, for small angles,

i
7

B tia

and

where the prime denotes differentiation with respect to arc length, s,

where
g t
_ \'
s = L\ at
0
Also, )
(q+iryd _ (wp tiwgdd
; FAY; - 2u 2
and
(Grifdd® |, w VO ot
Ayl 1 2V )

By comparison of the equations above with the corresponding Egs. (56)
and (57), involving the ballistic notation, a one-to-one correspondence
can be made between the aerodynamic coefficients and the ballistic
coeffieients, This one-to-one correspondence is shown in Table III.
Corresponding coefficients are not necessarily equai; if the C notation
is used, it should be adopted in toto.

11. Arnold Engineering Development Center (AEDC) Notation

Assume measurements of aerodyramic forces and moments are
made in a wind tunnel in which the mot‘on of the projectile model is

constrained such that there is no sideslip and there is no rotation about
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Comparison of Ballistic and Aerodynamic Notations

Table III

=

NA

FA

KXFA

KyTa
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the Z axis, i.e., suchthatp=0, r=0, andd = q. (The X axis is taken
to be at an angle a above the relative wind vector, the Y axis is taken

to be horizontal and out the side of the wind tunnel, and the Z axis is
directed downward and at an angle a frem the vertical.) Under these
constraints and with negligible terms excluded, the aerodyaamic equa-~

tions become

- pd
CY - CYpa A2
CZ = -« Czaa
C = C_a+{C +C_.) gd
m ma mq ma’ 2V
- pd
Cn - c:npo. A

With one exception, these relations define the notation used at AEDC,

where C is used in place of C, . It is also evident that C and
Na Za m

Cm& cannot be measured separately in a wind tunnel. A similar con-

clusion has already been mentioned with regard to free-flight test

measurements since

T ~

Ku-¥Ma © -1 (Cmq * L'mc'x.)
(See Subsection 8.)

It was mentioned that the notation herein was chosen to be in
agreement with that of AEDC. The following comments seem appro-
priate: AEDC reports (Refs. 30 through 38) available to the author
contain data for CNo,’ CYpa’ Cma’ Cmq + Cm&’ and Cnpa.' Data for
the other coefficieuts (besides drag and damping-in-roll) is lacking

and for them no definite sign convention is available. These missing
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coefficients are considered to be negligible, however, and no sign con-
vention is needed. Numerical values of CNo. and Cm(1 are positive,
whereas C + C__. is negative. Signs of Magnus coefficients C
mgq ma Y
and C
npa
conventions frorn AEDC reports. It is noted that AEDC does not

may be in error since it is difficult to determine their sign

strictly adhere to these definitions. One should be very careful to ob-
tain correct information as to definitions of force and moment coef-
ficients from wind tunnel and free-flight test range personnel. Their
definitions may differ somewhat from those herein, and it is very easy
to get a sign wrong or, say, be off by a factor of two. Some people use
pd/V in their definitions rather than pd/2V.

Reference 39 (Advisory Group For Aerospace Research and
Development, AGARDograph 121) contains methods of obtaining aero-
dynamic data by use of wind tunnels. The notation herein agrees with

that defined in Ref, 39 except for CNq which is negligible.

The notation herein differs somewhat from that of Ref. 40
(Ballistics Research Laboratory Memorandum Report No. 2192). The
major difference is in the use of pd/V instead of pd/2V for the dimen-

sionless spin,

12. Modeling of Aerodynamic Data for Trajectory Computations

In previous subsections, expressions have been developed for
aerodynamic forces and moments in terms of the aerodynamic coef-
ficieats, but nothing has been said about the form of these ¢ .ficients
other than that they are functions of M, Re’ v, and §. Attempts have
been made to derive expressions for these coefficients from fundamental
theory, but in practice, it is necessary to measure them for various
combinations of M, Re' v, and §. Such measurements are made in
wind tunnels, or by means of free-flight tests (Refs. 30 through 47).
Data thus obtained is tabular and a problem arises in the utilization of
this data in trajectory computation on a digital computer. Means of
multi-dimensional interpolation between data points is required. To

ascertain the extent of the problem, it is advantageous to examine the
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tabular data and determine as much as possible about the fun~tional

form of the aerodynamic coefficients,

12.1 The Functional Form of the Aerodynamic Coefficients ~ As

has been stated, the aerodynamic coefficients are functions of Mach
number, M, Reynolds number, Re’ dimensionless spin, v, and the yaw
angle, 6. Fortunately, variations with Re are slight and usually can be

ignored. The expression for Re is

MV d
s

R =@ ud _
¢ Ha Na

where n_ is the kinetic viscosity and V is the speed of sound. Since
both VS and W, are functions of altitude, Re varies with altitude and
attempts have been made to model certain aerodynamic data as such
(Ref. 48). Unless extreme variations in altitude along a trajectory are
anticipated, however, Reynolds number variations may be ignored.
This may be regarded as the best policy unless experience proves

otherwise,

The effect of dimensiorless spin, v, upon the drag, lift, and over-
turning moment coefficients, KD, KL’ and KM' respectively, is be-
lieved to be negligible. That there is a slight effect is demonstrated
in Ref. 7. Until proven otherwise, KD, KL, and KM are assumed to be
indcpendent of v. The damping moment coefficient K;; is also
usually msdeled as such., On the other hand, the Magnus coefficients,
KF and KT’ are both functions of v and should be modeled as such. The
spin deceleration coefficient, KA, is presumably also a function of v,
but KA is hard to measure and little data may be available. This poses
somewhat of a dilemma since lack of knowledge of K, in trajectory
compntation implies a lack of knowledge of v. Extensive modeling of

KF and KT in terms of v is then of questionable value.

All coefficients are functions of M and §, although adequate data

for modeling may be hard to obtain, This is particularly true of KF

and KT since they are functions of three variables, M, v, and §.
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In summary, the aerodynamic coefficients may be written in

terms of their independent variables as follows:

D = KD(M,S)

L= K (M)
KM = KM(M,G)
KH = KH (M, 5)
KF = KF (M, v, 6)
KT = KT (M, v, 5)
KA = KA (M, v, §)

All other aerodynamic forces and moments are considered to be negli-

gible, and are excluded fromn consideration,

12.2 Polynomial Curve Fits - Modeling of aerodynamic data for

cotuputer use can be accomplished by fitting low-order polynomials in
two or three variables to the data. The drag coefficient caa usually be

expressed by the relation

Kp = KDO (M) [x + KD62 (M) sin® 5]

in which Kp (M) is the zero-yaw drag and the term in the square brack-
o
ets accounts for non-zero yaw, For small-yaw applications, sin § is

sometimes replaced with 6§, whereas for high-vaw situations, more

terms in sin46, sin66, etc. can be included if they are needed, KD (M)
o
and Kp 2(M) may be fitted in sections in powers of M or 1/M, If Ml'
)

MZ' o ey Mn are numbers such that

M1<M2<.=.<Mn

for example,
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provides a good fit to Ky over the interval

o

Mi<M:s Mi+1

if the interval is not too large. On the other hand, an expression valid

for high Mach numbers has been found useful. Itis

(a +bM)2 |
2

K =
Do M

This can be obtained by curve fitting the '"Q function' (Ref. 49),

Q = /1+M2KD = a+bM
o]

The lift coefficient, KL' may be handled in a similar fashion. In

the interval Mi <M= Mi+ one can write,

and sin §. < sin § =< sin 6.
1 1t

1 1

for example

- £
KL—(aO+a1M+ +a1M)

m, . 2
+(ao+blM+... +me } sin™ 6

+---

n, . 2k
+ (c0+ C1M+---+ an)sm )

Similar expressions can be written for KM and KH.

KF’ KT‘ and KA are functions of three variables: M, v, and
sin”6., Polynomials may be constructed for them in much the same

manner.
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~ical plots of KD vs M and KD vs sin26 with M constant are
o

shown in Fig, 4. Plotes of vther aerodynamic coefficients may be
found in the literature, See, for example, Refs., 30 through 40, Three-

dimensional plots of some of the ccefficients are shown in Ref. 50,
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(a) Zero-Yaw Drag Coefficient

sin25
(b} Plot of KD vs sin26 for M Constant

Figure 4
The Drag Coefficient
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SECTION III

A STUDY OF PROJECTILE ANGULAR MOTION

1. General

The system of aerodynamic forces and moments has been sub-
jected to a comprehensive examination in the previous section and it
is convenient at this point to investigate the effect of these forces and
moments upon the motion of a spinning shell, There is no hope of ob-
taining a closed-form analytical solution for this motion, so it is appro-
priate to solve simplified sets of equations to gain insight into the be-
havior of projectile motion. The starting place is to solve the equations
of motion for the case where there are no aerodynamic forces and
moments acting upon the shell. The main inte-est, here, is in the
angular motion, since the translational motion is simple. The next
step is to solve the equations of angular motion for the case where the
only torque acting is an overturning moment, These two simplified
examples aid in understanding the precessional and nutational motions
of a projectile. The second case involving the overturning mcmeant is
mathematically equivalent to the motion of a spinning top acted upon by
gravity, as is treated in many text books on Mechanics (Ref, 51, for
example). The next step is to compare the motion of a projectile acted
upon by an overturning moment with epicyclic motion, which is some-
times used to approximate projectile motion. The addition of damping
to epicyclic motion completes the picture, more or less, and gives

rise to an understanding of dynamic stability.

With this background in mind, it is possible to obtain an approxi-
mate solution for the angular motion of a spinning shell by use of the
complex notation of Section I, The six-degree-of-freedom equations
of motion are set up in the complex notation and solved under simplify-
ing assumptions as to the importance of certain terms with regard to
size, Slowly varying terms are assumed to be constant, so the solu-
tion should be valid only along a short section of the trajectory. The

solution thus obtained is epicyclic.
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This section is closed with a discussion of windage jump and drift,
both of which result from the angular motion of the projectile and forces
normal to the trajectory, Windage jump must be considered in situa-
tions where the angle between the gunand the aircraft velocity vector is large.
Drift is not usually considered in air firings, but it may be important

for new rounds under development at long ranges,

The material in this section is entirely tutorial. The equations
derived using the complex notation are not suitable for numerical inte -
gration, and equations appropriate for that purpose are derived in
Section III. A knowledge of this material is essential to the under-~

standing of projzctile motion, windage jump, and dri‘t, however.

2. The Equations of Motion

Ttre six-degree-of-freedom equations of motion are derived from

M., _on's laws, which are

du
ma-f- =

I
=
-+
8

o

dH _
dt T

o

where m 1s the projectile mass, g is the acceleration due to gravity,

and His the angular momentum, The x , X, coordinate system of

' X
the projectile is chosen in an incompletelly gpezified manner so that
the longitudinal axis of the projectile coincides with the X, axis, but
the projectile is free to rotate with respect to the X,, X3 axes, The
angular velocity of the xl,xz,x3 coordinate system is § and it follows

that
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The axial and transverse moments of inertia of the projectile are
A and B, respectively, and, with respect to the X1 X, %q coordinate
system

H = X, Awl + xZB w, + x3Bw3 (60)

where ;1, ;;2' and §3 are unit vectors in the indicated directions. The
time rate of change of a vector € in a rotating coordinate system with

angular velocity Q is given by

-—
13

T =Cc+8ax¢C (61)
where a dot above the arrow indicates a time derivative measured in
inertial space and a dot below the arrow represents a time derivative

observed in the rotating coordinate system (Ref. 51). It follows that

rn(ﬁ1 twyu, - ouu,) = F, 4 mg, (62)
m(&z twu - 91u3) = FZ + mg, (63)
m(a, +32,u, - w,u,} = Fyt+mgy (64)
AC)I = Gl (65)
Bb, +wyhe) -2 Buy = G, (66)
Bd)3 + Qlez - wZAwl = G3 (67)

Use has been made of 2, = v, and R, = ©5. The set of angular motion

equations will be sclved for the case where G = 0, and for the case
where G1 = GZ = 0 and G3 = M sin 8, This will be followed by a dis-
cussion of epicyclic motion, damped epicyclic motion, and dynamic

50




TRy

s L L EL TR

stability, These solutivns should give the reader sufficient insight
into the angular motion of a projectile tc understand later develop-

ments,

3. Torque-Free Motion

It is of interest in passing to ascertain the motion of a projectile
when the aerodynamic torque is zero. In this instance, the angular
momentum vector H is constant in magnitude and direction, and it will
be convenient to choose a coordinate system such that the x axis lies
along g (Fig. 5). In such a system, the motion of the projectile is

particularly simple.

In Fig. 5, 0 is the angle between the projectile x, axis and x axis,

1

and ¢ is the angle between the y axis and the plane containing the X, and

x, axes, The angular velocity of the projectile is

w = xlq: + 1x¢+x36
where | is the rate of change of the orientation angle of the projectile
measured about the x
But

axis, and 1x is a unit vector in the x direction.

1

lx = x1 cose-x.2 sin 6

and the components of @ in the xl,xz,x3 system are

w = U+ $cos 0 (68)
w, = -  sin 0 (69)
0y = 6 (70)

The components of angular momentum are
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Figure 5

Coordinates for Studying Angular Motion
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.;: H1 = Awl (71)
H2 = sz (72)
H, = Bo, (73)

Since Xg is perpendicular to ﬁ, it follows that

H, = Bw, = B8 = 0 (74)

SO

and ¢ is constant. Components of

H = xlA.ml +xZBw2

resolved along the x and y' directions are

Awl cos 9 - sz sin @

I
e

(75)

Awl sin O + Bu.7 cos 0O

n
o

(76)

Since 8 is constant, v, and 0w, are also, because this set of equations

1 2
can be solved simultaneously for wy and w, in terms of 6 and H, Since
w, is constant, Eq. (69) shows that
w
s 2
® - Smo (77)

is constant, and it follows from Eq. (68) that lL is also,since @) 1S con-

stant,
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The analysis is almost complete for a projectile which is acted
upon by no aerodynamic torques. It precesses about its angular mo-
! mentum vector with constant rate, J> An expression for $ in terms
3 of H is required, however. Since (33 = 0, it follows from Eq. (67)
_ that
] QleZ - wZAwl = (..)Z(BQ1 - Awl) = 0

and since, in general, wy # 0

A

But Q. is the angular velocity of the X 1%y X3 coordinate system about

1
x1 and
;i (.01 = l.IJ + ﬂl
so, from Eq. (68)
Q = é cos @ (79)
From Egs. (75) and (76)
Awl = H cos 6 (8c)
From Egs. (78), (79), and (80), it follows that
(s1)

*+ _H
*= 5

It also follows that

¥,
LA v e
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- H 0
w) = cos (82)

- H .
w, = -—B-—sme (83)

56 w, and w, are given as functions of 6,

4. Mocgtion Under the Action of an Overturning Moment

A second example of interest is the motion of a projectile under
the influence of an overturning moment. Figure 5 and the notation of
the last subsection can be used, but H is no longer along the x axis as
shown, The overturning moment is always perpendicular to the plane

containing X, and x and is taken to be

G, = Msin 8 (84)

where M is a positive constant.

This problem is mathematically equivalent to the motion of a spin-
ning top under the influence of gravity, in which case M = mgf, where ¢

is the distance from the top center of mass to the pivot (Ref. 51).

By Eq. (65), with Gl =0
H = Ao (85)

is constant, Also, since G3 is perpendicular to x, the component of B

in the x direction,

Hx = Awl cos 6 - sz sin 0 (86)

is constant, These last two equations yield

Hl cos 9 - Hx
w, = (87)
B sin @
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and from Eq. (69)

. Hl cos B - Hx
¢ = (88)

B sinze

From Egs. (68), (85}, and (88)

. H1 H1 cos 6 - Hx
P o= + cos 0 (89)
A B sinze

These expressions for $ and lL are dependent upon 0 alone. An expres-

sion for 6 in terms of 8 can be derived from consideration of the energy.

The rate of doiug work is G+ ©, and from Eq. (61),
.ﬁ = 111+s'z‘x H=3G

It follows that

H-0=-(H+0xH -0 =H"2=0"
since
“ Y2 “3
o-(@xH = 2, “2 w3 =0
Awl sz Bw3

But, according to Eq. (60)




T

!

Ad,w

1 1+Bw2w + Bw,w

2 33

£}
n

and from Egs. (70) and (84), and since Gl = Cr2 =0

G0 = Gw, = éMsine=-§— M cos 0

373 t
Then
d 1 2 2 2 _ d
at E(Awl "l'B(.oZ +Bw3) = -EMCOSB
and it follows that
1 2 2 2y . . 1
Z(Awl +Bm2 +Bw3)-— Mcos O +E (90)

where E' is a constant., Since w, is constant, this expression may be

1

written as

1 2, 2 - ol 2
Z-B (w2+w3)+Mcose = E ZAwl—E (91)
where E is a constant. E', of course, is the total rntational energy of
the projectile, and E is the energy associated with the iransverse

motion. Solution of this expression for wg yields

2 _ 2E M 2
w3 =§F -F 058 -0,

and from Egs. (70) and (87),
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H cos9 -H
2 2E 2M 1 X
6 "B—--_B—COSB-( B sin 6 ) (92)

This is the desired expression for 8 in terms of §. With the substitution

w = cos § (93)

and with rearrangement, it can be put in the form
. 2
w2 = (1 - wila - Bw) - (aw - b)* = F(w) (94)

where a, B, a, and b are constants given by

« = g (95)
p = 24 (96)
Hl
a = [§g— (97)
Hx
b = —B— (98)
It follows that
w
¢ = g dw (99)
W ’JF(W)
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A solution for t may be found in terms of elliptic functions accord-
ing to Ref, 51, but such a solution would serve no particular purpose
here. It is sufficient to make certain observations concerning the varia-
tion of § with time. F(w} is a cubic and may be plotted as shown in
Fig. 6. For large |w [, the dominant term in F(w) is pws, and since
p is positive, F(w) is positive for large positive w and negative for
large negative w, For w = 1, F(w) equals -(xa - b)‘2 and is negative
{(unless b = a or b = -a). It follows that the plot of F(w) vs w must have
the characteristics shown in Fig. 6, with two roots in the region
-1<w< 1, and a third root in the region w > 1. The physical motion
of the projectile can occur only if F(w) is positive, and this occurs
between w, and w_. Otherwise, éz would be negative and 6 imaginary,

1 2
or else cos 6 would be greater than zero, which is impossible. Thus

w, = cos0. < cosf= cosez=w2

or

The angles 91 and 92 are 'turning angles' at which

é:i:'\/-F_(C_O-S—eT

changes sign. When 0 reaches 61, 6 changes sign and approaches 92;‘

0 changes sign again at ez and 6 approaches 6 This motion is cyclic,

and typical examples are sketched in Fig, 7 folr different values of
parameters a, $, a, and b, These sketches represent 8(t) vs ¢(t) in
polar coordinates as t varies., The projectile is observed to move with
a relatively slow precessional motion about the x axis. On top of this
precessional motion, a faster ''nmutational'' motion is observed as 6

moves back and forth between 61 and 92.
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(a) b-acos8>0

for 91?_9292

(b) b ~acosH=0at 97 ~vhere the

motion stops instantaneously

(c} b - a cos 0 changes sign

between 0l and 92

Figure 7

Typical Examples of Precessional and Nutational Motion
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The motion shown in the three examples of Fig, 7 is explained

as follows. Equation (88) may be written

. b-a
¢=-—-——1’Z
1 -w

where a and b are determined by initial conditions, In Fig. 7(a), q'> is
positive, ¢ continuously increases, and the curve is tangent to both
the inner and outer circles. In this case, b - aw > 0 for all w between

W, and W, (or for 6 between 91

between el and 92. Clockwise motion is exhibited at el but counter-

clockwise motion occurs at 62. In this case, b - aw = 0 has a root

and BZ). In Fig. 7(c), ¢ changes sign

between W and w_;i.e., w,<b/a< W In Fig. 7(b), b-aw =0at92, in

which case both &)Zand 0 are zero at the same time, the motion stops
instantaneously, and a cusp touches the inner circle. This is not an
exceptional case, as one might think,since the values of a and b are
determined by initial conditions., At the instant a shell is fired from a

stationary gun, ¢ = 8 = 0 and the expected motion is that of Fig. 7(b).

5. Epicyclic Motion and Dynamic Stability

A type of motion which approximates that described in the last
subsection, and which is sometimes used to approximate the angular
motion of a projectile, is epicyclic motion, If a wheel is attached to
the rim of another wheel, as shown in Fig., 8, a point P on the rim of
the first wheel executes epicylic motion, From Fig. 8 it is seen that

the coordinates of I are

8 = A coswt+A coswt = |0] cos¢
P P n n

[«
n

A _sinw t+ A sin o t = Ielsinq)
P p n n
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in Fig. 5 with the x Axis into the Page

Figure 8
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In terms of complex numbers

iwpt iq)nt i
8 =8 +i0, = Ae © tAe =0 ]e (100)

Subscripts p and n stand for precession and nutation, respectively.

A better approximation to projectile motion is provided if Ap and

An are damped, that is, if

-l t
A = A e P
P po

-u t
A = A e P
n no

sSo

- tiw t u tHiw t
= p p n n
0. = Apo e t A e (101)
In this case, the arms Ap and An continually get shorter and the motion

is similar to that sketched in Fig, 9. This motion is typical of a dynam-

ically stable projectile. The criteria for dynamic stability are

p.p)O and p.n>0 (102)
Damping results from the inclusion of the damping moment
GH = - DwT (103)
where D is assumed to be constant and
@ (104)

The differential equations for 6)2 and <I>3 with the overturning and damping

moments included are

64

il -
- oo i ST AR Y
i i .Wﬁmmmw:vm o




e
e ppr RO S <  n,

Figure 9
Damped Epicyclic Motion
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sz + (Awl - Bﬂl) w3 -D(.o2 (105)

Bw3 - (A’»l - BQI) w,

-Dm3+Msin9 (106)

Obviously, the damping moment opposes and tends to reduce the angular

motion,

6. Complex Notation

The equations of motion can be written in terms of the complex
notation of Section II, and an approximate solution can be obtained

(Refs. 1, 2, 3, and 16, for example). As in Section Il

u, + iu
\ = 2 3
u
_ (wz + iw3)d
s

Time derivatives are transformed into derivatives with respect to arc

length, s, measured in calibers, where

t
s = g 3 dt (107)
0
Differentiation with respect to s will be denoted by a prime, e.g.,

Upon utilization of Eqs. (44) through (47), and Egs (62) throngh (67),

the equations of motion in complex notation become

ul

ul 43 BA-pX o pdt

) m DA Z (109)
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3 (g, +ig;)d
_ pd s 2 3 ;
= .Er.ﬁ_[-KN-rnu{F]x + -———uz-——--— (110)
3 2
u' _ pd md
vitgv = - S R vKy (t11}
Q.d
R - I
1) [u 1B v +1 3 ]p.
d3 md2
= .E_.m =5 g- vKq - 1KM$ M- Kpp (112)

Aerodynamic forces and moments which are considered negligible have
been deleted.

It is convenient to utilize the equation of translational motion which

corresponds to the direction of u, It is

2
mu = - pd"uz Kp + mg (113)

where g, is the component of g in the direction of u. With the sub-

stitution
a = %-u' (114)
Equation (113) becomes
3 g d
u' _ d u
== -.Lm Ky + — (115)
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This equation can be used to eliminate u'/u from the equations for \'

and p'. Upon making the substitutions

g = -—u-l- = cos & ' (116)
and
3
- pd
JX = KX (117)

in which X is any of the subscripts D, N, T, etc., Eqgs. (110} and (112)

become

gud Qld (g2+ig3)d
MA Ny -Ip-ivipgt — +i——)h-ifp = —=— (118

“D F 2z
u u
2 2 g d
' md . md ) u
Q2.d
. A .1
-1 TV +1 —u—] M =~ 0 (119)
Also, the eguation for v' becomes

mdz gud

v = - 5=, - Ip +—.12 v (120)

7. Magnitude of Aerodynamic Forces and Moments

It is of interest to estimate the magnitude of the aerodynamic forces
and moments to acquire a feel for their effect upon projectile motion.
Accordingly, the aerodynamics of the 20-mm, M56 round will be used
(Refs. 40,and 52 through 54). For the 20-mm round,

M = 0.221b

A - 0.000131b ft2
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0.00096 1b ftZ

w
1

[N
1

0.06562 ft

If firings are made at sea level,

o = 0.076475 lb/ft>

and parameters needed in the equations of Subsection 6 are

24 0.982x107%
m

2
md~
o 7.28
2
md-  _
A
5 ° 0.135

Aerodynamic data at M = 3 for small yaw is

]

:{D 0.14

A
R
o

F .1

~
i
o

.7

~
n

= 2,0

K. ~ -0.05

A
R

0.01
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Except for KF and K,, these values were taken from Ref, 53, The
value for KF was calculated from the curve fits in Ref, 54. No data is
readily available for K,, so a more or less typical value is used. The

value for KH i the value obtained when the bal. rotor fuze (Refs. 52

and 53) is removed. The measured value with the ball rotor in place,
at M = 3, is K5 =0.05,

The value of projectile velocity correspondiag to M = 3 at sea level

18

u = 3350 ft/sec

A value for v at the gun muzzle can be obtained from a knowledge

of the projectile muzzle velocity, VM, and the twist of the rifling, n,

where
VM = 3300 ft/sec
n = 25,586 calibers per turn
(Ref. 54). The projectile turns through one revolution when it travels

a distance nd in the barrel, so

“1 27
VM nd

and the initial value of @) is

w, = 12,400 rad/sec

The initial value of v is

v = 1 = 0.24

The terms due to gravity are less in absolute magnitude than
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2
u

while values of JX or VJX are

Using these typical values, it is seen from Eq. (120} that v' is

small.
mdZ 3 T
A A°°D
The solution to
) 1
B

should be valid at least for small values of s and is

It is clear that v does not change much over a trajecto.y.

In the equation for \', Eq. (118), the leading terms in the coef-

ficient of \ are

R

R

Il

3

R

12

4

1.4%X10°
1.2X10°
2.4% 10"
7x107°
2x1074
1.2X10°

10'6

-0.7% 107

-0.7X 10"
e
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Ip is about 10% of JN and the gravity term is completely negligible;
lg is retained because real and imaginary terms are treated sepa-
rately., The leading terms in the coefficient of |4 in the p' equation,
Eq. (119), are

Eiz_J ..i.é.v-{-igﬁ
B H B u

The gravity term is negligible, and Jp is small compared to the damp-

ing term containing J H° The set of equations

Q2.d (g, t+ig,)d
. A | . 2 3
A +[JN-1VJF+1-——u ] N-igp = ——————-—-—u2 (122)
2
md .
'ty [vJThJM]x
2 n.d
md”~ A A | N
+[——-B JH-1—-—Bv+1 = ] p=0 {(123)

with v constant as a candidate for approximate solution,

8. An Approximate Solution

To solve Eqgs. (122) and (123} with v constant, a complete speci-

fication of the rotating X)X coordinate system must be made so

2'*3
that Ql may be defined (see Subsection 2)., This can be done in a number

of ways, but for present purposes, it is convenient to define the X 1 %yrXg

system so Ql = 0. The details are not required, however, since only a
partial solution of projectile motion is desired. Approximate equations
for X and p will be derived, whereas the development of equations for

the direction cosines relating the X 0%y, X coordinate to inertial space

3
will be omitted,
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Since the influence of gravity over a short distance s along a tra-

. jectory is slight, the term
(g2 + 1g3)d
2
u
will be omitted,
Also,
4 = cos b

is approximately equal to 1 for reasonably small yaw angles, e.g.,
cos § = 0,978 at § = 120, and so we set

The rest of the coefficients are slowly varying and it will be assumed
that they are constant, The solution thus obtained will not be exact,
but it will show the character of the true solution. The equations to be

solved may be written

NMtaltap =0 (124)
- 12
p."l-bl)\*i'bzp. = 0 (125)

where
a, = In-ivig (126)
a, = -i (127)

md2 .
b1 = 5 [vJT+1JM] (128)
2

_ md . A s¢
bZ = 5 Jy-igv (129)
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The solution is straightforward (see Ref, 55), Set
N o= e (120}

po= pe : (131)

where )\o, Mo and k are constants, Substitution of these expressions

into the differential equations yield:

(k + a.l))\o + ap, = 0 (132)
bl)\o +(k + bz)p.o =0 (133)
and nonzero solutions exist for )\0 and B only if the determinant
k+ a, a,
(134)
bl k + b2
equals zero or if
2 -—
k™ + (a1 + bZ)k + alb2 - a,?_b1 = 0 (135)
The solution of this quadratic equation is
2
. - -(a1 + bZ) :!:J(:«.\1 + b?_) - 4r(a1b2 - azbl)
2
(136)
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(139)

(140)

(141)
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According to DeMoivre's theorem (Ref, 56)

s
Nc + ie = 'ch-i-ez [cos%+isin%—] (144)

where
COS @ = ——— . (145)
c + e2
sing = ——o (146)
c2 + e2
But
cos%— - fl +2cos Q (147)
o a l-ccs a
sin = 3 , (148)
and so

Neiie = J%(ch+e2+c) +i\’[%(~]c2+ei-c)=h+ iq  (149)

(It has been assumed that a is in the first quadrant; if not, appropriate

changes must be made in the signs of the radicals in Eqs.(147) and (148).)

It follows that

2k = -a +ib+ (h + iq) (150)

and that

-a_s+if s -a_8 tif s
N=ae PPy e 0 o (151)

o
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where )\P and )\n are constants, and

a, = %(a - h) (152)
a, = 3(a+th (153)
Pp = ;; (b +q) (154)
Bp = %(b - q (155)

A similar expression exists for y, and it is seen that the motions of \ and
i are epicyclic in the variable s. For dynamic stability, it is required
that

ap> 0 and a > 0 (156)
It is observed that |\ | = sin §, where § is the angle between the
projectile spin axis and the velocity vector, and the precessional and
nutational motion is about the velocity vector. The plane of yaw is the
plane containing the spin axis and the vclociiy vector ard so it precesses
with the projectile. Since the liit force is in the plane oi yaw, aud the
Magnus force is perpendicular to it, these forces also precess about the

velocity vector,

The analysis of this section is approximate, and the results are
tutorial. A better approximation is given in Ref. 16 along with a develop-
ment of criteria for static and dynamic stability., A treatment similar to
that of Ref. 16, with slightly less general results, may be found in Ref. 1,
In passing, it is observed without proof that the condition for gyroscopic
stability is

s™ > 1 (157)
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where

2
K _(awym)? A

4md®/B)],,  4Bpd u’K

="t

(158)
M

(Refs, 1 and 16).

9. Windage jump and Drift

Windage jump and drift may both be interpreted as deflections of
the projectile trajectory away from its initial direction of motion due to
aerodynamic forces. Windage jump is caused by the precessional and
nutational motion of the projectile near the gun muzzle, while drift re-
sults from the effects of gravity at long ranges, Whereas drift has not
been found important in the past, it may be significant for the new, heavy,

high-muzzle-velocity rounds under development,

The windage jump arises from the side forces on the projectile
and the precessional motion of the projectile about the velocity vector,
The side forces are the lift force in the plane of yaw, and the Magnus
force perpendicular to the plane of yaw. These forces would be zero if
the angle of attack, 6, were zero. As the spinuing projectile moves down
its trajectory, the aerodynamic moments cause it to precess about its
direction of motion like a top under gravity and so the plane of yaw pre-
cesses with the projectile. The side forces are carried with the plane of
yaw and the changing direction of the forces moves the projectile first in
one direction and then in another. For a dynamically stable projectile,
the angle of attack decreases (on the average) with time and the side
forces decrease. The center of mass of the projectile moves downrange
along a ''spiral" of continuously decreasing radius. The angle of attack
decreases to effectively zero usually within the first 1000 ft and the spiral-
ing motion stops, The net result is that the direction of motion of the
projectile is changed by the amount of the windage jump. Equations for
the windage jump are given in Sections IV and V. An explanation of the

drift is as follows,
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At long ranges, and in the absence of gravity, the vawing motion
of the projectile would completely die out. Gravity, however, causes
curvature in the trajectory and the continually changing direction of the
velociwy vector induces a yaw angle, called the yav :=f repose, beiween
the projectile spin axis and the velocity vector. A talance of aerody-
namic and gyroscopic moments causes the projectile to move with its
nose pointed slightly up and to the right of the trajectory, and the effect
is to deflect the trajectory un and to the right. A treatment of drift is

given in Ref. 57.
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SECTION 1Iv

EQUATIONS OF MOTION FOR COMPUTER UTILIZATION

1. General
The complex number rcpresentation of the six-degree-cf-freedom

equations of motion derived in Section III is useful for analytical studies
of the behavior of a projectile 1n flight, but it is not suitable for rapid
computation on a digital computer. Two different formulations of the
equations of motion are presented in this section., The first, a matrix
formulation, can be advantageously programmed on a digital computer
for the rapid generation of trajectory tables, whereas the second method,
an Fuler angle approach, is more adaptable to numerical studies and to
approximation. Derivations for the matrix formulation and the Euler
angle representation follov: ‘a Subsections 2 and 3. In Subsection 4,
approximate equations are developed from the Euler angle set for the
approximate computation of trajectory tables. These equations are use-
ful when it 1s permissible to sacrifice accuracy in favor of speed in com-
putation. Initial conditions are not give -~ in this section. For computer
studies, these parameters may te chosen arbitrarily, whereas they
must be calculated in airborne applications. Calculation of initial con-

ditions in airborne applications is treated in Section VI,

2. A Matrix Formulation
A right-handed X, Y, Z inertial coordinate system is defined as

follows: X and Y are horizontal and Z is vertical. The X,Y, and Z
coordinates refer to the center of mass of the projectile and unit vectors

'}-(., Y, and Z are defined in the indicated directions,

system is defined in Section II with its origin

A moving x ' X

1°%2°%3

at the center of mass of the projectile, The X axis is along the longi-

tudinal axis of the projectile and is positive toward the nose. The x,
and x, axes are normal to x, but are not fixed in the projectile., The

3 1 =

X 0%Xy0Xg system is right-handed and ;l . ;2, and x, are unit vectors

in the indicated directions. The orientation of the X 2%y X3 system

with respect to the X, Y,7 system is given by the relation
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X, £ 1, 14 X
X, =| m; m, m, Y (159)
x3 nl n2 n3 Z

The angular velocity of the x

» X, X, System is

1’72’73

u = x.u +x’u + x
and

xlul + xzwz + x3w3

w =
The angular momentum of the shell is

+ X Bw. + Xx.Bo

H = ] T ¥pPwy T X300,

it
x,Aw
1

where A and B are, respectively, the axial and transverse mmoments of

inertia of the projectile. The equations of motion are

-—

m(a +2Xu)

and
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A dot over the arrow refers to a time derivative measured in the X,Y,Z
system, whereas a dot under the arrow denotes a time derivative mea-

sured in the moving system, Fis force, G is torque, and m is the pro-

i jectile mass. The equations of motion in matrix form are
F, a, 0 -2, @\ [,
FZ = m \'12 +m 93 0 —Ql u, {(160)
Fju s -2, a2, o/ \u,
and
/Gx A 0 0 G \
C:2 = 0 B 0 “"2
G3 0 0 B .33
3 -8y Q, A 0 0 W)
48 0 -, 0 B 0 ©, (161)
-, Ql 0 0 0 B w3

The restriction that the X axis coincides with the projectile longitudinal

axis implies that

92 = @, (162}
93 = W, (163)

ﬂl may be chosen arbitrarily. The choice QI =Wy is inconvenient for

numerical integration because a very small step size (of the order of

B2




0.1X Zn‘/wl) will be required. Also, we have no interest in the angular

orientation of the projectile about the X, axis. A second choice is to

constrain the xl,xz‘,x3 coordinate system to move in a manner such

that the X3 axis remains in the horizontal plane. This choice is con-

venient since x, is always in a vertical plane and Ql is small. A third

convenient choice is 2, = 0,

1

Forces and moments are

_ 2.2

F o= -pd"u"Kp, - mgt, (164)

F. = -pd?uK.u. - pd®uvK _u. - mem (165)
2 - TPeubnNY; =P F'3 gMmy

F. = - 4% uK,\u +pdZ uvK_u, - mgn (166)
3 P N3 F 2 3

_ 3 2

Gl = -pdu vKA (167)

G. = -pdduvKou. +pdouK, .u. -pdtuK (168)
2 P TU, e M43 ~Pd uKye,

G, = - S uvKou, - pduK. ,u, - pdta w (169)
3 © P U3 - P M3z - P duKge,

where g is the acceleration due to gravity., The aerodynamic forces
and moments are the same as those of Section II, Subsection 5 with
negligible terms deleted. If aerodynamic data for Kp and KL is avail-

able rather than that for Kp 4 and K the following expressions may be
used

]

pa = Kpcos s - K sinZs (170)

~
0

N KL c056+KD (171)
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cos & = —t (172)
a
w,d
v = =L (173)
u
u = ﬁf+u§+u§ (1'4)

The aerodynamic ccefficients (the K's) are functions of Mach number,

sin 6, v, and possibly Reynolds number (see Section II),

The matrix equation for the velocity is

X
I m, 0 !
Y = 2, m, n, u, (175)
Z
13 m3 n3 u3

and the matrix equation for the time rates of cnange of the direction

- cosines is

Lo o™y b omy 0 R, 2,
-i JJ m n = £ m n Q 0 Q2
dt 2 2 2 |- 2 2 2 3 ™
13 m3 n3 £3 rn3 n3 -QZ Ql 0

(176)

This set of matrix equations, aleng with the equations for the aero-
dynamic forces and moments, completely describes the motion of a pro-
jectile. For numerical solution, it has the advantage that no trigonometric

functions need be evaluated from angles (cos & = ul/u) and as a consequence



computations are fast. It also has the advantage that no division by
small numbers occurs, such as division by sin & for small §. The
problem of division by small numbers often occurs in formulations in-
volving Euler's angles. But, instead of the expected twelve equations,
there are eighteen! The redundancy is containzd in the equation for the
direction cosines. One might use the properties of the direction cosine
matrix (orthogonality, etc.) to reduce the number of equations, tut
this has not becn found to be advantageous., Instead, all eighteen equa-
tions are integrated simulianeously. (Actually only seventeen nced be
integrated since the angle of rotation of the projectile about its spin
axis is of no interest.) Nimerical problems occur which are associated
with the direction cosine matrix not remaining orthogopal, however.

One method of correcting this deficiency is to replace the matrix by

—2]-'- (A+ [):rl)

where A is the direction cosine matrix and A-.Il\ is the inverse of the

transpose (Ref, 58).

3. Euler Angle Development

Large portions of the development given here and in the next sub-
section is taken almost verbatim from Ref, 59. Changes have been
made as necessary, however, to clarify and adapt Ref. 59 to present

purposes. Portions not pertincut to present needs have been deleted.

A right-handed, orthogonal, rectilinear £,n,¢ coordinate system
which is stationary with respect to the ground is defined with § mea-
sured down range, n vertically up, and {, to the right as seen by a
person facing down range. A second right-handed, orthogonal, recti-
linear coordinate system 1', J', K' is superimposed on £,7n,{. The
two coordinate systems have a common origin O, and the angular
orientation of 1', J', K' with respect to £, 0, { is specified by the two
angles a and 6 (see Fig. 10). The angles a1 and 6 are by definition the

azimuth and elevation angles, respectively, of the bullet veiocity
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Figure 10

Velocity Vector Coordinates

86




"}!
y
®
¥
i

vector U as measured in the £,m, L coordinate system, and 1' is
always along u. The azimuth angle a is measured from the £ axis

to £', the projection of U on the horizontal plane, and the elevation
angie 8 is measured from £' to u or to 1'. The angle a is a counter-
clockwise rotation as seen from above (from the positive n axis} and

0 is a counterclockwise rotation about K' as seen frora the positive K!
axis. Note that K' an.l ¢! are coplanar with {, and £ ard are horizontal,

and that 1' and J' are coplanar with £! and n.

Now, define a 1,J,K coordinate system parallel to 1', J', K' but
moving with the projectile and with its origin at the center of mass of
the projectile. In this system, define a right-handed, orthogonal
coordinate system 1, 2, 3, (s=e Fig. 11). The 1-2 plane contains the
axis of symmetry, A, of the projectile and is the plane of yaw; A is
directed from the projectile center of mass toward the nose. The angle
¢ is a counterclockwise rotation about 1 as seen irom 1 and is measured
in the T7-K plane from J to 2. The angle §, the yaw angle, is the angle
in the plane of yaw between the projectile velocity vector and the axis
of symmetry, and it is a counterclockwise rotation about 3 as seen
from 3. The angle y (not shown in the figure) is ihe roll angle of the
projectile measured about A, and it is assumed to be a counterclock-

wise rotation as seen from A; LT) is the roll rate of the projectile,

It is observed that the angles 6§, ¢, and y, which define the pro-
jectile orientation with respect to the moving i, J, K system, are
Euler angles. Contiary to the notation of Section II, the 1, 2, 3, system
is attached to u rather than to the projectile, The A, B, 3 ccordinates
used here correspond to the x

» X, system defined in Section II,

1"%2'*3
Figures 10 and 11 show that the orientation angles of the 1,2,3
coordinate system are a, 0, and ¢, and that 1, 2, 3, constitutes a co-
ordinate system with one axis parallel to the velocity vector u and
with the other two axes rotating at essentially the precession rate of
the projectile. The angular velccity of the 1,2, 3 coordinate system

with respect tc the fixed system is
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Coordinates of Angular Motion
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Q = lna+ 1K6+ 11¢
where T . TK’ and Tl are unit vectors along n, K(or K'} and 1, respec-
tively, ancd a dot represents differentiation with respect to time. To ob-
tain components of Q along the 1, 2, and 3 directions, unit vectors T‘ﬂ

and TK are resolved along the 1 and 2 directions as follows:

lK 12 sing + T3 cos 9

=
I

llsme + 1Jcose

Tlsin(%‘ + (TZ cos¢ - T3sin¢) cos @

The equations for TJ and TK are obtained directly from Fig. 1i, but
T’l is obtained from Fig. 10. Substitution of lK and 1 into the ex-
pression for £ yields the 1, 2, 3 components of @ and they are

a = b +a sin@ (177)
92 = a cos cosO + ) sing (178)
Q, = -4 sin¢ cos8 + 0 cosé (179)

Note that a and 8 are small since the direction of the velocity vector

does not ¢nange much, and consequently QZ and ‘.’23 are small.

therefore, is essentially the precession rate of the projectile.

l'

Figure 11 shows that the angular velocity of the projectile is

- _- o~

o = 0 J,,1

and therefore, the components of angular velocity of the projectile

resolved along the A, B, 3 axes are
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w, = @ cosb+Q, sind + U =Q, t (180)
wg = -Ql sind -l-Sz2 cosé = QB (181)
Wy = Q5 %6 (182)

Components of the angular momentum of the projectile are

HA = Aw, (183)
H.B = Bup (184)
H3 = Bu, (185)

where A and B are the axial and transverse moments of inertia of the
projectile. It is assumed that the projectile is symmetrical about its
longitudinal axis, and that the moments of inertia about all transverse

axes through the center of mass are egjual.
Newton's second law for rotational motion can be written as
G=H+a'xH (186)
where G is the aerodynamic torque, and

n'=5-1A¢

is the angular velocity of the A,B, 3 coordinate system; that is, Q' is

equal to ©» minus the axial spin., Components of Q' along A, B, and 3

are
QY = oy b=y
9 = vp
2; = w3
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and corresponding components of Eq. (186) are

GA = A‘*’A (187)
GB = BwB + w3AwA - QABw3 {188}
G3 = Bw3 + QAB(..;B - QBAwA (189)

Equations (187}, (183), and (189) constitute the angular motion equa-
tions of the projectile, and GA’ GB' and G3 are the aerodynamic
moments,

Newton's second law for linear motion with velocity and force

components resolved along the 1, 2, 3 directions is

Fo-m[ardxi] (190)
and also
F1 = mu (191)
F, = mQ,u (192)
F3 = -mQ,u (193)

The components of F and G may be ideutified with the proper
aerodynamic forces and moments, from Fig. 11 and the results of
Section II, with careful attention to geometry. The X19X51 X5 directions
of Section II may be identified with the A,B, 3 directions, respectively,
in this section, and in Eqgs. (44), (48), and (49), F1 becomes FA, F2
becomes FB’ u, becomes ug = -u sin b, and u, is zero, If gr--ity is
ignored for the moment, and negligible serodynamic terms are dis-

carded, it follows that
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- 2 2
FA--pduKDA
22 .
FB=pduKNsm6
- 2 2 .
}?3 = ~pd-u VKF sin §

But, for the 1 and 2 directions of this subsection

F

1

F2

i

i

FAcosﬁ -F

FA sin6 + F

B

B

i}

sind

it

cos &

pdauz(-KDA + Ky cos 8) sin®

(194)

(195)

(196)

-pdzu2 (KDA cos b + KNsin2 §) (197)

(198)

From Egs. (54) and (55), and when the gravity terms are added in, it

follows that

_ 2 2 .
F1 = -pdTu KD - mg sin@
_ 2 2 .
FZ = pd-u KL sind - mg cosBcos¢
2 2 . .
F3 = -pduvKFs1n5+mgcoses1n¢

(199)

(200)

(201)

In Eqgs. (46), (50), and (51) for the aerodynamic torques, ideniification

of the x

1 Gy

(as before), and W,

1'%2
G2 becomes GB’ u

» X

3

it follows that

4‘:"&”3“?'5%2“?:'!!!{”"8’(\\':@?,%” HoPnA g e o

2
becomes wy. When negligible terms are discarded

system with the A,B, 3 system implies that G

= - pd3u2vKA

32 . 4
= pd7u vK siné - pd uKHwB

32 . 4
= pd-u Ky sinb - pd uKHm3

92

becomes ug = -u sin § (as before}], u

becomes

is zero

(202)
(203)

(204)
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where

w,d
v = ——_-f}—- (205)
Equations for a and 8 can be obta nec in terms of 2, and 2, from

2 3
Egs. (178} and (179].

acos® = Q, cosé - 2 s

De
1

Q, sin¢g +Q

2 cos ¢

3

From Egs. (192) and (193) it follows that

. 1 .
a cos® = -G {-F3 cusd - F2 s1n¢]
e ] ‘,ﬁ . —- -‘
6 = — -F s1n¢+r2cos¢ '
{

mu L 3

and finally, from Egs. (200) and (201)

2 -
. d"u 51 i 4
e m cos 6 [vKF cos ¢ - K a1n¢] e ® (296)
8 = pdzu rvK sin¢g + K, cos ‘!sinﬁ £ coso (207)
= m L F ¢ L (b ‘ - u co

(In numeracal integration, divisior by cos @ causes numerical trouble

when 0 is near :1:900.) From Egs. (191} and (199}

o = pdu’ Kp - g sin @ (208)

Equations (206), (207), and (208) are the equations for u in polar co-
ordirates. The equations for projectile position can be obtained from

examination of Fig, 10, They are
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é = ucosb cosa (209,
} = usin® (210)
i, = -ucosB cosa (211)

By use of Eqs. {187), (188), (189), (202), (203), and (204), the

angular motion equations may now be written as

AG, = -pdtuw,K, (212)
Bip, + wyhw, - 2,Bu,

= pdtuw, K sins - pd*uK oy (213)
BJ)3 +92,Bug - wghAw,

= pd3u2KM sind - pd4uKHw3 (214)

where v has been replaced by the right side of Eq. (205). Q, is obtained

as follows: use Egs. (178) and (179) to calculate QZ and 93; then Ql
may be obtained from Eq. (181), i.e.
Q cos b -w
_ 2 B
Q1 - sin o (215)

(Division by sin 6 causes numerical integration problems when § is
small,! Given 91 and QZ’ Eq. (180) yields Q,. Also, b and 6 may be
obtained from Egs. (177) and (182).

3.1 Summary of Equations - It is convenient to collect together
They are as

the complete set of six-degree-of-freedom equations,

follows:




M abLE"

2
pd u - . ] .
) a ) [v KF cos ¢ KL sin ¢ | sin 6

2
9 = B.%Hﬂ [vl(Fsin¢+KLcos¢]sin6-gcose
2 2
a= -BlY g _gsineg

Q. =& cos Bcos ¢+ 0sin¢

2
Q, = -4 cos @ sin ¢ + 0 cos ¢
q - -wB+chosﬁ

1 sin
QA =ﬂlcosﬁ+ﬂzsm6

4
« _ pdiu
op = -=x “aKa
_ wAd
v =
u
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-Q

one
u
€

5 = R, -4sind

§ -~ 2cosBcosa

= usin®g

e
L

£ = -ucos 6 sina

Initial conditions are treated in Section VI,

4. Approximate Equations for Large-Yaw Computations

This subsection contains a derivation of the upproximate equa-
ns o . >ction used at Eglin Air " ~rce Base for trajectory table

alc 1l=ticr ¢ the 20-mm, M5{ round An equivalent set has also been
~sed in ke _oymputaden ol iacles b, LRI {Kel. Fi). Presumably, the
Datnd oo nYt adentz?t Sew rounds unde. uevelapment. Another der-
vaticz of -2 two approximals cquations of anular ruotion can be found
12 Ref, €€, This derivaticw i5 quite "adious, howrever, and derivations
of the othsr equations are la~king., The development hereln is thai of
el 39 v ith minor changes tor cisritvy and is based up.:n tne equations
7 tro last seb~ection,  ne eguaticas of lirear molion mast pz formu-

atzd i tas S, 9,0 sysicm, hcwever,

The -2ason for asing thesc approx.mate 2quations is thev ~au be
evaluated mich: ster on a digital computer than can the six-degree-nf-
freelom equations., Thne zngvr'ar inotion is approximated and the niia-
tion moticn (Secticn 777} is eliminated, Since the {ine detail of the nuta-
tional met-o: iz absent, and onuiy the precessional mast o~ is left, the
numerical ster s 7¢ caz he increased and thereby coutputer time is

reduced, The derivation praceeds as follows,

Equation (192) is combined herc¢ with Eq. (200) for future ref-

erence:
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mi u = deuZK

3 1, §iné - mg cos® cos¢ (216}

Equations (199), (200), and (201} transformed to the 1, J, K system

are
F. = -pd®u®K.. - ma cing 7)
1 P D S - (21
1
2.2 . .
FJ =. pd u [KL cos¢ + vKF s1n¢]sm6 - mg cosG' .(218)
; F., = pdZu? [K sing - vK_ cosé |siné (219)
: K~ P L F ;
And in terms of the £,1,{ system
Fg = F1 c0s50 cosa - FJ s8in@ cosa + FK sina (220)
1 Fn = F,sing + F; cose (221)
s Fg = -Is"l cos9 sina + FJ sin 8 sina + FK cosa (222)
X
If Eqs. (217), {(218), and {219) are combined with Eqs. (220), (221},
3 and (222), and use is made of Eqgs. {209), (210}, and (211), the

fcllowing expressions are obtaiued

] Fg = -pdz uKDé - deuZ [KL cos¢ + vKF sin¢] sind sinBcosa

+pd£u2 [KL siné - vKF cosq)] sind sina (223)
F = «deuK ;‘ + deuZ [K cosd+ vK._.sing | sind cosf - m (224)

n D L F g

F, = -deuK i + pdzu2 ’K cosp+ vK . sind|sind sin@ sin

4 D L F @
+pd%u? K sin$ - vK s-]s' ) )
P L F O ¢J ind cosa (225
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Finally,
mé = F, (226)
mij = F_ (227)
mt, = F, (228)

4.1 The Siacci-Type Approximation to the Force Equations - As

in the derivation of the Siacci equations (Section V), i’ is defined as a
vector along the initial velocity vector of the projectile to a point
(almost) directly above the sheli, and Q is defined as a vector pointing
vertically down from the tip of P (almost) to the projectile. The dis-
tance from the tip of Q to the projectile is the swerve S. The swerve
is defined to be the displacement of the shell from P+ —C}; i.e., it is
the displacement of the shell from its straight-line path due to forces
other than gravity {(or due to aerodynamic forces but not to gravity).
The Siacci equations ignore the swerve, but it is accounted for later

by the windage jump. The procedure here is similar; differential equa-
tions for the swerve will be obtained from the differential equations of

motion by subtracting out the Siacci equations for P and Q.

By definition, the initial velocity vector —-o 1s taken in the ¢,
plane so thata = a, = 0. Since P lies along t_fo, the elevation angle of
T above the horizontal (and in the £, n plane) is (3(J (see Fig. 12).
Siacci-type equations for P and Q, and for swerve components S,, S ,

and S, are derived as follows., Interms of P, Q, Sg, Sn, and Sg, the

coordinates £, n, and { are

£ = Pcosg +5, (229)
n = Psin 8, -Qt S.n (230)
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Thus, the force Eqs. (223) through (228) become
1) ”0 2 . L) .

Vo= o
m(P coseo + Sg, pd uhD(P coseo + Sg)

2 2 . . .
-pd™u [KL cosd + vKF sm¢] sind sin@ cosa

+ pdzuZ [KL sin$ - vKp. cos¢] sind sina (232)
1] . 'Y oo _ 2 [ . L4 . -
m(F smeo - Q+Srl) = -pd uKD(P smeooQ-rSn)
+pd2u‘2 [KL cosé+ vKFsincp] sind cos® - mg (233)
m.S. = -deuK S
L D7t
+ deuZ. [KL cosdp + vKF sin¢] sind sin@sina
+pd2u2 [KL sing - vKp cos¢] sind cosa (234)
By definition, the Siacci equations for P and Q are
mP = -pd®uk P (235)
mQ = -deuKD(‘) + mg (236)
with
. L
a (237)

ua = (PZ - ZfDé sin 60 + éz)'

They are obtained from the equations above with the swerve set to zero
and with all aerodynamic coefficients except KD set to zero. Upon
substitution of Eqs. (2.5} and (236) into Eqs. (232) and (233), terms
containing P and (.3 cancel and the equations for the swerve components

S, and S"l remain. The following are obtained:

3
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mS, = 'deuKé

3 D¢
2 2 . . .
-pd™u [KL cosd + vKF s1n¢] sind sind cosa
2 2 . . .
+pdu [KL sing - vKF cos<|>] sind sina (238)
mS = -deuK S + pd‘zuZ K. cos¢+vK . sing|sind cos (239)
n Dy L ¥

The equation for §, is Eq. (234).

L

i The equations derived up to this point would be exact if ég, éﬂ'
and Sg were included in Eq. (237). Little error results, however, if
these terms are ignored. For Egs. (238) and (239) to be used as
written, it would be necessary to integrate the equations for a and 0.
But since 8 and a do not change much from their original values of
0 = eo and o = 0° for those trajectories which are of interest, 6 will be
replaced by Go, cos a will be replaced by 1 and sin a by 0. The dif-

ferential equations for the swerve beccme

P 2 . e 22y R T

mSg = -pd mKDSg - pd”u .KL cos¢ +vKL s1n¢]s1n6 .s‘lneo (240)

mS = -pd®uk S +pdu’([k cosd +vK . sing|sind cosd (241}
n P D n P L F o] '

mS, = - dZuK S, + dzu2 FK sing - vK . cos¢|siub (242}
S 2 F ‘ |

Equations (240) and (241} can be combined. Take

= - i ( 1542
S.L S§ sin Bo +Sncas ec 243)

S, = S, cos® +S siné (244)
3 o n o

where S, and S|| are in the £, n plane and are respectivaly pecpendi-

1

cular and parallel to F; S, is positive above P, and it wiil be shown

i

that S" is identically zero. The equations for §l and 'S.II as derived
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from Egs. (240) and (241) are

= 2 ¢ 2 2 . .
mS, = -pd uKDS_L + pd~u [K.L cos¢t+vKp smq)JsmB (245)
§ = -pd’uKk. S (246)
] Dl
Since att = 0, él = ." = 0, it is evident that S" is identically zero for
allt. Values of Sg and Sn, then, are
Sg = -SJ. sin 90 (247)
S'l = S.L cos eo (248)

and it is observed that the three differential equations for s-werve have

been reduced to two, Eqs. {242) and (245),

If Eqs. (242) and (245) are used in their present form to com-
pute firing tables, the initial precession angle <|>o will have to be one
of the table entry parameters; if one more coordinate transformation
is made, however, this can be avoided and the volume of the tables
will te greatly reduced, Components of swerve in and perpendicular
to the plane of initial yaw are used. See Fig. 13 in which Pis direct-

ed into the page. The new swerve components are

S, =S cos¢o+S

5 1 sing, (249)

4

83 = --S_L sing_ + S§ cosd (250)

with S2 in the plane of yaw and S3 normal to it, The differential equa-

tions for S2 and S3 are

2 .
~-pd uKDS 2 +

mSZ

pd%u? [KLcoscb' +vKp sin¢'] sins  (251)

mS3

-pdzuKD§3 + deuZ [KL sind' - vKFcos¢']sin6 (252)
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Figure 13

Relation of S_ and S3 with Respect to Sl and S
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where

=

and ¢' = 0 att =0, Given ¢o, 60, and values of S2 and S3, values of
Sé, Sn, and S, can be found from

g
S§ = -(S2 cos¢ - 53 smq)o) sind (253)
S"l = (S2 cos¢ - S3 smq;o)coseo (254)
Sg = S2 s1n¢° + S3 cos¢° (255)

If angular windage jumps (in milliradians) are desired, they are

3
, = 10°5/P (256)

y
n

I, = 103S3/P (257)

In Ref. 59, SZ and S3 were denoted by the symbols Sx and Sy,
respectively. The notation used here is preferable, since S2 and S3
are in the 2 and 3 directions, respectively, of Fig. 11 when viewed
at the time of firing, Calculations show that J 2 and J 3 @aPProach more
or less constant values as the projectile moves down its trajectory.
Accordingly, windage jump can be accounted for by calculating the
point-mass trajectory defined by Eqs. (235), (236}, and (237), and by
moving the resultznt hit-point vector P + Q through angles J2 and J 2
in and perpendicular, respectively, to the initial plane of yaw, as seen
from the point of fire. The windage jump correction amounts to a slight

change in the direction of P or 1,

The set of equations derive thus far is complete and can be used
to compute firing tables. If the spin is sufficiently large, however,
the equations of angular motion can be simplified and the computation
time can be reduced considerably. The following subsection contains

the simplified equations and the justification for simplification.
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4.2 The Approximate Equations of Angular Motion - The crite-

rion for simrlifying the equations of angular motior: is that the spin
must be large enough for the motion of the shell to be essentially gyro-

i scopic, In this case, the angular momentum vector H will be nearly

parallel to TA’ and the component of H perpendicular to TA will be

LRIV S

small.

If 5 is a unit vector in the direction of H,
H = Hs {258)

and Newton's second law for angular motion becomes

G- H - fI5 + Hs (259)
and so
1 Sx% = HS x5 = Hay (260)
g where
@y = 8 X s (261)

is the angular velocity of H, as can be seeh from Fig, 14. Under the
assumption that Aw, >> ) wp (see Fig, 15), it follows that H is nearly

parallel to TA’ or that
5 =1

A (262)

and that the angular velocity of FI, that is “-;H’ is approximately equal

to the transverse angular velocity of the projectile, «:;T;

Wy ¥ g = leB + 130)3 (263)

T e R
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a unit vector along H
a unit vector along As

a unit vector pointing out of ihe page
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Then H =Aw and Eq. (260) becomes

T

) ::T XG (264)

AwA (leB + @3

It follows from Eqs. (203) and (204) that

4 . 4 ’
Ay, =~ pd m.oAKT sind - pd uK op {265)

W3hWA

3.2 . 4
Aw, = pd u'Ky sind - pd uKyjw, (266)

ORI

This approximation is equivalent to deleting terms containing B in Egs.
(213) and (214). The advantage is the elimination of terms containing

J’B and 5)3. This negates the need for integrating to obtain wg and w3

and also smoothes out the nutational motion as is explained by Reed

(Ref. 60). The smoothing of the nutational moticn alleviates the require-

ment for a small step size (At) in numerical calculations.

The approximate equations for ¢ and § are obtained by solving

Egs. (265) and (266) simultaneously for wp and w3e

2

-Aw,pd3u’K sing + p2a8ule, K, K. siné
A M ARy
wg ~ z T2 (267)
(Aw, ) + (pd uKH)
Apdtaw K sing + p%d" oK K, sins
(268)

W =
3 2 4 2
(AwA) + (pd uKH)

For high spin, (pcl"‘uKH)2 is usually much less than one percent of

(AwA)Z; hence, (pd4uKH)2 is dropped from the denominator and these

equations become

108

TS wm P




AU TN S i, 1

A O T P I TR Faf T R R R TR T ORI

32 5
o = - %_:_ [KM 'EACL KHKT] sin§ (269}
atu pd5
wy = B.K._ Kp + X— KKy |sins (270)
v

The equation for § can now be derived from Egs. (182), (216), and (2790).

It becomes

6 = - .ESTZ‘L [ {K + —- K KM}] siné +E cos@cosd  (271)
The gravity term must be dropped frora this equation, since, for very
small yaw, the aerodvnamic term will be small compared to the gravity
term and erroneous results will be obtained in numerical integration
attempts, The term containing KHKM is probably negligible., Calcula-
tions skow this to be so for the 20-mm, M56 round, but a judgment will
be needed for new rounds under development. To obtain the time de-

rivative of cos §, Eq. (271) is multiplied through by - sin5. Then

dcosé _ pdzu K md* K +___K sin%6 (272)
I = = L~ A H I\:I}

The equation for é> is derived from Eqgs. (177), (178), (181}, and
(269) under the assumption that a and 8 are negligible in comparison

with c.b If & and 6 are neglected, the equation for &> is

& L‘f_ﬁ K (273)
AwA M

il

The term convaining KH was dropped because it is negligible.
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4.3 Summary of Equations - The approximate equations are

summavrized as follows for the ~onvenience of the reader:
LY _ 2 L]
mP = -pd uKyP
o 2 .
mQ = -pd"uKHQ + mg

m.S.‘,: = -deuKDSZ + pd?‘u2 [KL cos ¢'+ vKF sin ¢'] sin §

rnS3 e -deuKDS3 + pd?‘u2 [KL sin¢' --vKF cos ¢! ] sin &

2 2 ¢ 5
dcosd _ pdiu md pd 1 . 2
T = [KL -5 {KT + —TAV KHKM) sin” §
. Ed3u2
: ¢ = AwA KM

$'= 6 -

4
S§ = - (SZ 0S¢ - S3 sin ¢0) sin 6,
? Sr‘ = (S2 cos ¢o - S3 sin ¢°) cos 60
; SQ = S2 sin ¢0 + S3 cos ¢

RN
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SECTION V

THE SIACCI METHOD

1. General

Tre Siacci method (Refs. 1, 24, 27, and 61) is a means of obtaining
approximate solutions to projectile trajectories by use of tables. It is
applicable in many situations where high computational accuracy is not
essential, such as in preliminary design aad in new concept studies, and
in particular, i* is valid for relatively short trajectories where gravity
drop is not appreciable and yaw is small. The calculational ease with
which the method can be utilized, e.g., in hand computations, or in an
airborne fire-control computer, makes the Siacci method invaluable in
many modern applications despite its early origin. The original method
was devised sometime around 1880 by F. Siacci of Italy, The treatment

given here is that of Ref. 6! with minor changes.

With the development of the 20-mm, M56 rcund in the late 1950's,
the trend in ballistics calculations was away from use of the Siacci
method and toward more sophisticated calculations since modern com-
puting equipment was becoming available. Sophisticated methods are
now well suited to ground-based ballistics investigations, but for airborne
fire-control calculations, onboard computers are still somewhat Jimited
in capacity. The Siacci method is still a candidate for airborne fire-
control calculations.

A description of the basic Siacci method follows and a derivation

is given in Subsection 2. In its basic form, the trajectory as given by

the Siacci solution is as follows:

ga
(o]

t = ¢ [T(u/ao) - T(uo/ao)] (274)
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P = ..E_. [S(u/ao) - S(uo/ao)] (273}
o

and

a
t"'.0

C 2 o
Q= ( ) [A(u/a,o) - A(uo/'ao) - I(uo/ao) Yol P] (276)

in which S, T, I, and A are tcbulated functions of U = u/ao; t is the

time of flight, P is the '""oseucdorange' along the initial velocity vector
;‘Io’ and Q is the gravity drop (Fig. 1¢). The parameter ¢ is the relative
air density at the firing altitude, a is the ratio of the speed of sound at
the firing altitude to that at sea level, and C is the allistic coefficient
given in terms of the projectile mass m, in pounds, and diameter d, in

feet, as shown below:
in .2
C = (lb/ln-) e &

144a°

The parameter u is defined as follows

and is the independent variable,

The tabulated functions S, T, I, and A are calculated by numerical

integration of the following equations:

ds _ 1 -
dU0 - ~ G{O) (277)
dT_. 1 (278)

3 S - S (279)

Tmag SORMOY Lpn pnitiTaue ne
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dA I(U)
-El-f £ - m (280)

in which

g = 32.174 ft/sec?

is the acceleration due to gravity, and

UK, (U/Vso)
1883

G(U) = (281)

K is the zero-yaw drag coefficient, and Vso = 1,116.45 ft/sec is the
speed of sound at sea level. The numerical integration is carried out
backwards (i.e., the integration proceeds from larger to smaller U)
from some arbitrarily chosen value of U, e.g., V, such that V> u/ao
for all u of interest. Initial conditions are S(V) = 0, T(V) = 0, A(V) = 0,
and I{V) = 0. The solution given by Egs. (274), 275), and (276) is inde-

pendent of the choice of V. The Siacci functions bear the following names:

Space function
Time function
Inclination functisn

Altitude function

> om o @

At the date of writing, tables have beea prepared for the 7. 62-mm
NATO round, the 20-mm, M56 round, and the 40-mm, Mk 2 round, (Refs. 62,
63, and 64),

For computer applications (airborne or ground based) the Siacci

functions can be curve fitted,

The Siacci method in its basic form is useful in most situations
where point-mass (particle) trajectories are applicable, that is, situa-
tions where the projectile angle of attack (yaw) is small and all aero-
dynamic forces except the drag are negligible. This situation occurs
for forward fire from fixed-gun fighters and sometimes in tail defense
of bombers. For example, the Siacci method is applicable to fire-~

control problems for thc F-111 and for use with tracer-line-type gun
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sights, although it may be just as convenient to perform onboard particle

trajectory computations in these instances,

For fire from flexible guns and from fixed gun fighters in high angle~
of-attack situations, the angle of attack of the projectile can be large and
other aerodynamic forces besides the drag become important., In this
instance the Siacci method in its basic form becomes inadequate. On-
board trajectory computatiors are no longer reasonable, however, when
six-degree-of -frecdom computations are necessary., Techniques for im-
proving the accuracy of the Siacci method for the large-yaw situaticn are

given in Subsection 3.

2. The Basic Siacci Method

The basic Siacci trajectory is an approximation of a point-mass

trajectory. Corrections can be added to irnprove its accuracy as will
be discussed later in Subsecticn 3. The equations of motion of a mass

point, as can be derived from Fig. 16, are

m% = -Ex (282)

my = -Ey - mg 1283)
where

E = pd® VKL(V/V) (284)

V is the nroiectile velocity, d is the projectile diameter, m is the pro-
jectile mass, g is the acceleration due to gravity, Kp is the drag coef-
ficient, and p and v are respectively, the air density and the speed of
sound at the altitude of the firing point. Both p and v, are assumed con-
stant over the trajectory. This is not a bad assumption for the air-to-

air case and for close air support,.

Coordinates x and y are to be replaced by Siacci coordinates P

and Q shown in Fig. 16, Substitution of

x = P cos 90 (285)
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y = Psmeo-Q

into the differential equations yields

mis = .EP
m@Q = -Eé+mg

where § is the angle between P and the x axis and is a constant.

An equation for (.)/1.:’ is required. By means of the relation

(3)- 2800
dt b P2

and the differential equations above, it can be shown that

d (Q\_. g
Bf(p) b

With the substitution u = P, the equations to be solved are

mu - deuVKD(V/Vs)

o
n
<

and

in which E has been replaced by deVKD, and V is given by

vV = ’\/1'32 - 2PQ sin 6, + &?

. -y v

REZa Y

otk TS P g o

(286)

(287)

(288)

(289)

(290)

(291)

(292)

For shert, flat trajectories, é << l':’, and,to a good approximation,
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(293)

' This is the Siacci approximation which enables the trajectory computation
s to be reduced to tabular form since, from Eq. (289),

at = - ;ngu (294)
pd-u KD(U/VS)

can be integrated directly.

Before soiution, it is desirable to make the following substitu-

tions:
¢ = . C [} - T ] (295)
o-ao L (o]
C
P o= “;‘[5 -So] (296)
2
e
Q - (“ao> q (297)
u = a.oU (298)

where C, ¢, ao, To’ and S0 ave constants and T, S, q, and U are new
variables whick replace t, P, Q, and u, respectively. C is the ballistic
coefficient given by

m

C = 5 (299)
(12d)

Units of C are lb/iln..2 (for consistency with past usage) when m is in
pounds and d is in feet; ¢ is the ratio of the air density at altitude, p,
to that at sea level, Py

£
o= 300
b (300)

where Po = 0.076474 1b/ft3. The parameter a is the ratio of the speed
of sound Vs,at altitude, to that at sea level, Vso =1,116.45 ft/sec,
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(301)

With these substitutions, the equations of motion hecome

& = - UG(U) (302)
&= (303)
and
ar (v )= $ (304
where
T Vo) (305)

GU) = ——1ggz—

The reason for the substitution is now clear; these equations are indepen-
dent of Vs and p and hence, the Siacci tables are independent of aititude.

From the iirst equation

4T = - TEOY

and hence

as
Y
du (306)
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where V, for all applications of interest, is any convenient number such
that V > Uo' it foliows that

T-T = T(U)-T(U)
v v
_{ _au ¢ du
- \ UG(UY -~ , TUG{U)
1§} U,

That T - To is independent of V .s obvious.

The equation for S may be solved in a similar manner by eliminat-
ing dT.

S is defined as

v
{'l
= 307
5(U)=\ =y (307)
U
therefore

- = { - Si
S-8, S(U) S(Uo)

For the thiid expression, we have

gdU

= T = -
) ¢ uZG(u)

Eig‘

d(—llT
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since dq/dT = Q0 at T = To' If a function I(U) is defined as
v
I(U) = S _ig_d_U__ (308)
U U~G(U)
we have
1 dq _
v 3T °© I{u) - I(Uo)
Thus

dq = ULU)T - ULU )dT
_ yuyay , MUV
I 1(0) B (v I
- - 1O - uu e
and it follows that
U

(o]
{7 Ku)ydu
Q= 5 G(U) -HU) S - So)
U

{ a functiocn
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A
aw) = | L (309)
T

is defined, then
a = AU) - AU ) - XU ) {S(U) - sw,)

It follows that the relations for t, P, and Q are

C
t = 73, [T(u/ao) - T(uo/ao)] (310)

P = % [S(u/ao) - S(uo/ao)] (311)

\2

(3

where T, 5, I, and A are given by Egs. (306) through (309}, respectively,

In application, the functions S, T, A, and I are tabulated once and for

[A(u/ao) - A(uo/ao) -I(uO/ ao). -g;— P] (312)

all by numerical integration. Given initial and final bLullet velocities g

and u, respectively, t, P, and Q can be calculated by use of the tables.

3. Corrections to the Siacci Method

This section contains techniques for improving the accuracy of the
Siacci method when some of the basic assumptions upon which the method
is founded are violated. Corrections are developed for a variable atmos-
phere, yaw drag. and windage jump. This section is not complete in the
sense that the methods are fully developed. Rather it is meant to serve
as an indication of how correction techniques are derived. Indeed, tech-

niques depend somewhat upon individual rounds and are best investigated
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in conjunction with other calculational methods such as six-degree-of-
freedom calculations. Correction terms needed for one type of pro-
jectile may not be needed for another. Also, correction terms may be
derived by a number of different methods. Thus, different formulae for
the correction terms derived herein can be found in Refs. 65 and 66. A
comparison of correction techniques is given in Ref, 67 for some ob-

solete rounds,

3.1 A Variable Air-Density Correction - The Siacci theory in its

basic form is founded upon the approximation that the air density is cou-
stant along the projectile trajectory. To compensate for this approxima-
tion, correction formulae may be derived. The following comments are

pertinent, however,

In problems involving air-to-air combat, the target and attack
aircraft are usually at about the samec altitude and the air-density cor-
rection is unnecessary. In low-altitude air-to-ground problems, ex-
perience has shown that the calcul ted hit point 1s not much affected by
the constant air-density approximation, whereas the calculated time of
flight is affected. But, in air-to-ground situatiors, the time of flight is
usually not needed to any great accuracy provided the target is not mov-
ing rapidly and the wind is not strong. It is concluded that in most cases
an air-density correction is not needed, buf nevertheless correction
formulae will be developed for situations where they may be needed. The

derivation follows.

It will be assunied that the expression

p = p e A (313)

adequately represents the air-density variation at points between the gun
and the target, where o is sea level air density, o is the relative air
> ft'l), and Ay is

the altitude variation along the trajectory. Evidently, from Fig. 16,

density at the gun, h is a constant (h = 3,158 X 10~
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Ay = Psin® - Q=~Psin®
o o

Now consider the unvawed equations of motion (289), (290), and (291).
Eq. (289) becomes
-hP sin € 2 2
mu = - p o¢ % 4%y KD(u/VS)

under the Siacci approximation u = V, It follows that

" Ta, TGO~ © df
and that
c qu ~hI* sin 60
- —OT- —G-T[—JT = e dP

Integration of the second expression leads to

-hP sin 90
_S_ [S(U) - S(Uo)] - 1_ - T (314)
-hP sin @
Solving for e © yields
-hP sin 0

e =

°© _ 1.5 nsing [S(U)-S(U )]
o o °

This expression is of the form

Hence

[
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provided | | < 1. For an air-to-ground attack from an altitude of, say,

Psing_ = 5,000 ft

x = hFP sin @

= (3.158 x 10”°) (5, 000) = 0.16

and
e™™ = 0.852
It follows that
y = 0,148
and
yZ = 0.0219

Then, to within about 2 percent

or

“Psing C
e °= 1+ - hsin GO[S(U) -S(UO)]

The expression for dt becomes

a hPsinBo C 4y
- € ¢a__ GG(U)

o]

_{1+-0(?—hsin90 [S(U)-S(Uo)]} Ti_ ‘U?:IIJUT

and hence

[ N
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. _C [T(U)-T(Uo)]

(o]

+(_C&_)?_ _h_s:f_e_o_ {[H(U) - H(UO)] - S0 ) [T(U) -T(Uo)]} (315)

where
v
U

H(U) may be tabulated once and for all along with S, T, I, and A,

The numerical example above applies to maximum P and hence,to
minimum U. As U runs from Uo to U, y varies from zero to 0, 148.
This implies that the integration is probably much more accurate than
2 percent. If accuracy is found insufficient, e.g., for higher altitude
air-to-ground fire, more terms can be taken in ti.z 2xpansion for (1 - y)—l.

The analysis proceeds in a straightforward manner.

The correction term for Q may be derived as follows:

a2 - Ear
c. . 1) ¢ - au
= -i-U—gl +?—h SlneO[S(U)—S(UO)J% Té; m—r
Then
Q_ C
T [I(U) - 1(00)]

o (317)

2

o .
( (rao) h sing_ BS(U) - S(Uo)} (V) -3A(U) - A(Uo)”
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1f, {or short, (‘)/u = F, then

Fu dt

dQ

_Fil +_§_hsineo[sw) _S(UO)”% c‘%}—

If the second~order term in h sin E‘-o is discarded, since it is obviously

small, then

40 = (c—‘})“ [1(U> . I(Uo’]cdr%w

]
3
C . du
_(Gao) a_hsin®_ [{S(U) - S(U_)}L(U) - {A(U) - A(Uo)}]—TUTG
3
C . i e du
. (“o) s hsing [0 - 10 )} [500) - 5w )| Sy
and finally,
/c \
Q = \vao) ”A(U) - A(Lo)f S {S(U) - S(Uo)z]

3
+(C
o

a0) a, h sin 90 [{WI(U) - Wl(Uo)i

- ZS(UO) ;A(U) - A(Uo)z - I(Uo) 3W2(U) - WZ(Uo)f

+ gA(UO) +1(U ) S(Uo)z gS(U) _ S(Uo)i] (318)
where
v
. S(U) L(U) - A(U
Wl(J)=5 2 53¢ é(%)) AU 4o (319)

U

126




i

and
\'%
_ S(U) 0
WZ(U) = S L)) du (320)
U

The correction term is quite ~omplicated, and hopefully, is negligible

in most cases.

3.2 A Yaw-Drag Correction - In more exact trajectory computations,

other aerodynamic forces in addition to the zero-yaw drag force are in-
cluded, and the projectile is treated as a rigid becdy which executes angular
motion about its center of mass. An important additional force is the yaw
drag which urises from the angle of attack (yaw) of the projectile. The
yaw angle & is measured between the projectile body axis and the projectile
velocity vector. The drag force for the yawed projectile can be written

as

2
KD(M,G) = KDO(M) {1 +KD62 6 ] (321)

where, for present purposes, KD > is considered to be a constant and
5 .
M= V/VS is the Mach number. This expression for KD takes the place

of K in the equations of motion, i.e., in Egs. (282), (283), and (284),
and also in Egs. (287) and (288). If E retains its meaning, Eqgs. {287) and
(288) become

mP = -E [1+Kp sZlp
- 62 -
'y _ E B K 62- é+
mQ = - 1+ D6Z mg

If the derivation proceeds as before with the Siacci approximation V=P,
Eqgs. (289), (290), and (291) show that the following relations will be

obtained:
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mi = - pd? u? KD(u/Vs)[l + Kp 252]
6

Substitution of a U for u, p_o for p, 144d°C for m, and use of Eq. (305)
for KD yields the following result for the first relation above

271, . C du
[1 +KD626 ]dt_ - T3 TGO

It follows immediately that
t

¢ 2
t=—= [T(u/ao) - T(uo/ao)] -Kp , g 6% dt (322)
[o & 0
With
dP dp
HEE AT
it follows that
2 . C au
and
P
P=2X |swma)-Su/a)]-K 5% ap (323)
o o o' 7o DSZ
0

In order to derive a correction term for Q it is convenieut to write

the differential equation for Q in a different form as follows
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a a(Q)_d(Q)_ 4 do _dpd /dQ
- dt \v) " dt\z) "~ dt dF = dt dP |\ 4P
%
t _ dZQ _ g
s g = u 3 = Yy
¥ ap
L 1 or
% 2
: dQ _ &_
dp? u?
Let
_dQ
D =35
so that
dD _ g
4ar " 2
u
Then
1+K. .6%0ap = &1 +K. _8%lap
) 2 D.2
u 6
. .8 C du
- -:Z— o G(U)
or
dD = K} 262 £ ap. Cz zgdU
& u ga U~ G(U)
and it follows that
J ]
_ 2 g C
D = -KDGZ S 6" = dP + 5 [I(U) -I(UO)J (324)
0 u aao
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It follows that

or

+(
ga

C

2
) BA(U) - A(Uo)z - I(Uo)%S(U) - S(UO)H

o

1}
o
—
e
~
)
o
[y 8]
| S— |
[o N
o

2
ca
o]

PI

P
2 2 g

zg [1+KD 58 ]56 £~ dP" aP!
0 5 0 u

-r

P
C (‘ 2
Iu /a) \ 6 dp

o‘az
o 0
8 : 3
2 2 2 g
- KD62 J §“dQ - KD62) [1 +KD625 ]S‘ ) -u—?: dFn dP!
0 0 0
2 [\
) A(u/ao) - A(uo/ao) - I(uo/ao) & P (325)
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It is seen that equations for t, P, and Q can be written as before
but with correction terms

. t

Aty = -K (5 (326)

AP

"
5
x~
o~
L
o
[« N
o

(327)

AQ

._.
1
]
=N
)
o~y
o
=
=
~.
)
ol
R
o
[\S)
o
H

3
¢ .2 2 2 g
-KDSZ‘)G dQ-KD25[1+KD26]56 :ZdP"dP'
0 0 (328)
These equations can be evaluated only if § is a known function.

According to an approximate analysis by Sterne (Ref. 9), & is given
approximately by the relation

2 Zso"l/z

o s -1
o

e:(Zo-cI-"‘ {(329)

where 62 is an average,squared yaw, s represents the static stability
factor which is given by

2.2
5, = AI;‘ . (330)
4B pd uoKM
and
ch .
c:c'Jrso_1 (331)
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where N is the axial spin,

2
pod rnd2
— 1 3
ct = ) [ 5 "H+KL (332)
and
p d°
0
ch = S KD (333)

When Sterne's analysis was derived, there was no convenient
method of solving the general six-degree-of-freedom equations since
there were no large-scale digital computers. Now, it may be convenient
to solve them for yaw dependence and curve {it the solution. In any case,

it is probably true that § is given approximately by

-gP

T = K&oe (334)

where K and B are constants.

From the approximate theory, the equation for yaw, Eq. (272),

may be written as

2 2 -
. d®u md
% ‘LF[KL'TKTP

where the gravity term and the damping term K;; have beern. deleted and

the app-oximation sind = T has been used. :. Bq. (334) is assumed

for 'E, then

onfe
u
1
o]
"Ui
A
on
(o]
(4]
[}
el
]
I
o]
o
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and it follows that
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it 1s interesting to compare this result with that obtained from the Sterne
theory, Egs. (329) through (333), in which g = ¢ c. Curiously enough, it
can be shown that the two are in reasonable nurnerical agreement, at
least for the 20-mm, M56 round, despite the different emphasis on KH in

the two theories,

From examination of Eqgs. (326), {(327), and (328), it is evident . i

only AF. can be integrated directlv:

1
P
s -1/2 ~ k
2 O -20cP _ o 20cP ar
AP[ = -Kp 2% 5 1 5 e dP = 20cC [l € ] (335
6 o 0
where
s ~1/2
- _° - 2 334
ko T s -1 KD260 (336)
o )
The equation for S(u/ao) is often written as
ko
= g 37
S(u/ao) S(uo/ao) + TTP tsoE (337)

2acP

in which the e~ term is neglected for a large enough P,

L]
An expression for At. can be derived as follocws: since P = v,

1
and with k = 20c,
s -1/2
- . 2 o -
Atl = KD6260 ——-——-—--——s0 = T = -ko-r

where

o
a;r )y —g— 9P
0

The expression for S(U) with the APl correction is

ko -20cP
S(U)=S(Uo)+%-P+ —ZE—C,I - e 2 (23‘\)
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By use of this expression, a series in P can be derived for 1/U, It is

1 1 G(UO) o
o U0
G(Uo) 2 G Zcho - 2
+ = GU)-G(U ) - —2f H1+k )& P
ZUZ U0 o o (1+k )2 { o' C }
+
where
dG(U )
GYU.) = qg—
o

If only the first two terms of this series are used,

P

G(U )
~ 1 (o] g -kp
aor~§v—+ - (1+k ) &FPle " dP
0 ° Uo

The function represented by the first two terms of the series for }/U is
a straight line with the correct magnitude and slcpe at P = 0. As P
increases, it deviates from 1/U. But as P increases, the exponential
term decreases,so the major contribution to the integral is obtained for

P near zero where the approximation to }/U is more accurate. It
follows that

1-e~kp
Atl—-ko ku
(1+k)Gu /a) oca -
+ o oo _o ) g+kpe™
2 2 C
kuo

If this expressicn is not accurate enough, more terms can be retained.

For large kP, it reduces to
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(1+ ko)G(uo/ao) ca,

At. = -k + (339)
1 o T(uo kzu(z) C

An expression can be derived in a similar manner for AQ.. By

use of Egs. (329) and (336), Eq. (328) Lecomes

C n
AQl = - > /2 )ko 3 e
tra.o 0
f}‘? F P
-kFP dQ kP! -kPn g '
-ko‘) e H-P-dP-kOV [l-i-koe ]ge u—Z-dPndP
0 0 0

Let Zl’ ZZ’ and Z3 represent, respectively, the three integrals., The

first is

4
=) kP yp - 1-e
0

The second may be integrated by parts and by use of the expression

P
-kP . -kF
_ dQ e ‘ g e
Z,=-3qp xw— t) T 9
u
0
where, as follows from Eq. (324)
s P
; Q _ _C . -kF
IF = 2 [I(u/ao) - I(uo/ao,]- k, Se "f‘é‘ dp
o 0
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The third integral Z3 may be integrated by parts; it is

K ~
Z = .0 oKP ) okF 8 4p
3 u2
0
P x F
-5 p e kP -g_ZdP+-E‘3(e'2kP_52_dp
0 u 0 u
With
P
r _kP g
zZ, = ye F dP
0
P
- -kP g
z, = S‘Pe —uZ—dP
0
and
P
S‘e-?_kp g 4P
0

it follows that

1 ga
(o]

k
AQ. = T(_‘l CZ {I(u/ao)e-kP 'I(uo/a’o)}

- (1 + kp) Z4+k25'koZ6

Z4, ZS’ and Z6 can be evaluated approximately by expanding 1/U

series, The first two terms of this series are

v 2 G(U M1 +k ) & B+
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It follows that

k
Aq =2 & [I(u/ao) e'kP-I(uo,/ao)]

o ' aZ
T3
k g k
0 |kp 40 (1 - e 2KF
2 2 2
ku
o
Zkog N ko
- -2 -2 _ kP
+ k3u 3 G(uo/ao)(l + ko) c 1 ) k

k
_ o KP {1 - -43— (1 + 2kP) e'kp}:l (340)

More terms in the series for l/UZ may be retained if necessary. On the
other hand, one would expect to drop some of the exponential terms when
P is large.

3.3 A Windage-Jump Correction - A spinning projectile fired into

a crosswind experiences an angular deflection of its direction of motion

out of its initial plane of yaw. This deflection is numerically equal to
about 5 percent of the initial angle of attack (yaw). For an initial yaw of
2% = 17.5 milliradians, the windage jump is about 0. 87 milliradians, or
for 10“ yaw it is about 8.7 milliradians. For the 20-mm, M56 round, the
windage jump in milliradians is, as a rule of thumb, numerically equal

to the yaw angle in degrees (e.g., 5¢ yaw, 5 milliradians windage jump).
For forward fire from a fixed gun in an aircraft, windage jump is usually
ignored since the dispersion of such systems is of the order of 5 milli-
radians. For a fl~xible, side-firing, gun system, the windage jump must
be included, however, since the initial yaw may be as high as 20°.

For aircraft fire, the initial plane of yaw is the plane containing

the velocity vector of the aircraft VA and the muzzle velocity of the gun
VM' The initial yaw angle 60 is the angle between VM and the projectile
initial velocity vector Eo’ where
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uo = VA+VM

If the angle between VA and VM (the gun angle) is A, then, as can be

seen from Fig. 17, 50 is given by the relation

VA sin A
60'--s1n 60=_d—__ (341)
o
where
t = 2 2
5 JVA+VM+2VAVM cos A (342)

Figure 17

Projectile Geometry Showing Initial Angle of Attack
60 in the Initial Flane of Yaw
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The magnitude of the windage jump in radians is given approximately

in Ref, 9 as

b6°
3 € = e (343)

i o

where
K
_ AN L

b = — (——KM) (344)

A is the axial moment of inertia, N is the spin, m is the mass, d is the

diameter, KL is the lift coefficient, and KM is the overturning moment

coefficient., (Note that this expression does not contain the Magnus

moment coefficients KF and KT.)

In calculations, the windage jump is usually treated as a small
correction to Eo’ in which case Eo is defined as

O =V, +V,, +7J (245)

where J = u € and J is in tne direction of VA X VM' From Egq. (341),

Eq. (343), andsince |V, X V) | = V,V,/ sin A, it follows that

(V4 x %) L
J = __A._I\i_ u e & b V., XV (346)
- = o u Vv A M
IVAXVMI o M

Since J is small, the magnitude of u is not changed significantly. The
direction of P is taken to be along u_, so

—_
u

F = EO_ P (347)
(o]

An alternate treatment of the windage jump can be based upon the se!

of approximate equations of motion of Section IV, or on any appropriate
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six-degree-of-freedom code. The Eglin code R370, based upon the
approximate equations, is used to calculate windage-jump components
(a.mong other things) for the 20-mm, M56 round in and perpendicular tothe
initial plane of yaw. These zomponents may be used instead of J above.
Experience indicates that these windage -jump components are, for large
enough P, very nearly independent of all initial condition parameters

except 60. Appropriate formulae and necessary explanations follow.

Windage-jump parameters are JZ and J3. J3 corresponds to J
above and is normal to the plane of yaw, whereas JZ is in the plane of yaw
and is zero in the elementary theory. JZ and J3 are output in milliradians
as a function of time but they approach constant values as time increases.
From J2 and J3, swerve components in the units of P (distance) are cal-

culated from

s. = 1073 1P (348)

- -3
S, = 1077 J,P (349)
These components are transformed into an £,n,{ coordinate system

(Fig. 12) by means of the equations (from Section IV)

Sg = - (S2 cos ¢ - S3 sin ¢0) sin 0 (350)
Sn = (5, cos ¢, - S, sin ) cos 8 (351)
Sg = 5, sin ¢_ + S, cos (352)

where 9 is the elevation angle of uo above the horizontal and ¢ is the
angle measured about u between the vertical plane and the m1t1a1 posi-

tion of the plane oi yav\. Components of £, n, and { are given by

¢ = Pcos 60+Sg (353)
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P sin 90 -Q+ S"‘l (354)

S (355)

The £,n,{ coordinate system is shown in Fig, 12; £ and { are horizontal,

R
il

and n is vertical and is measured up. The system is right-handed,so [
is measured out of the page. P, Q, and Ho are in the £, n plane. KExpres-

sions for 60 and ¢, are derived in Section VI,

Values of JZ and J, used in 20-mm, M56 projectile calculations are

3

J3 = 53 60 (357)

where 60 is in radians, and JZ and J3 are in milliradians.

3.4 Independence of Correction Terms - The yaw-drag and the var-

iable air-density corrections were derived as if the two effects are inde-
pendent, This has some physical justification since the yaw-drag effect
is important at the beginning of the trajectory,whereas the change in air
density is greatest (e.g., in the air-to-ground case) at longer ranges.
There is a difficulty, however, with the equation containing P, The ques-
tion arises as to whether Eq, (314) or Eq. (337) should be used. This is
resolved by including both effects in Eq. (289). The following relation is

obtained

-hP sin g

- 0 -kP
_.B__-C_(m_e [l+koe ]dP

-hP sin @
- [e °-+koe‘kp]dp

This is a good approximation since in practice k >> h, (For the 20-mm,
M56 round, k = 0.004, whereas h ~0,00003.) It follows that the cor-

rect expression to be used must be
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3 -hP sin 0
: o 1- ekP

c B - =%
= [s(u/ao) - S(uo/ao)] : h'sin 6 t
hF sin 0 LN
@ P{l - — }* K (358)

This last approximation should Le good past P =~ 1, 000 ft,

3.5 Summary of Resulfs - Formulae derived in this section are

listed below ior convenience, Q andt denote gravity drop and time of
flight as obtained from the basic Siacci theory, whereas Qc and t. denote

corrected values.

hP sin 0
o 3 o)

S(u/ao) = S(uo/ao) + =C +t P {1 - __2__—-}

P [T(u/ao> : T‘“o/ao’]
o

Iy« 1 ¥

Ay I ) L P
Q- (Ua Alw/a) - Ala/a ) - /) &

o

T gy AR

t = t+ At + At
c P 1
Q = Q+AQ_ + AQ
c ) 1
c \V . } \
Atp = (;_-a-:c-)) aoh sin 90 [H(u/ao) - rI(uo/a,o
ca_
- S(uo/ao) - t
k ca 1+k
o o o
At1 = Xu [l t T u G(‘lo/a'o)‘]
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.. % < I (u /a )
AQI" Tk 2 o o %o
1 u-ao
k g ca_ l+k k
(s} . (o] [o] __Q__kp
-kzz [——-2 + kP Z—C——ku G(uo/ao) 1 3
u o
o
A"
S(U)du
no) = § ey

3
AQ = ( c ) a h sind [Wx(“/ao) - W, (u /a)

ca
o

- ZS(uo/ao)gA(u/ao) - A(uo/ao)l

)

- I(uo/a,o) ’Wz(u/ao) - WZ(uo/ao)i

+ 3 A(uo/ao) + Io(uo/ao) S(uo/ao)% ; S{u/ao) - S(uo/ao)g}

A%
- 25(U) I{U) - A(U)
WI(U) = g G(0) du
U

v
- S(U)
Wolu) = g coy Y

Exponential terms have been eliminated from the correction terms for

At, and AQI' Additional equations (Sterne's theory) are

1
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s -1/2 2
k0 = s -1 Kl) 260
o 6
and also
h = 3.158% 107> £t~}

An alternate expression for ¢ derived from the approximate theory is
2

o md
m [KL- A KT]

Equations describing the windage jump are

7. (v v)
O
b_AN__£
= md\Ky,
"15=-—°_P
u
(o]

Alternate windage-jump equations from the approximate theory (see
Fig, 12) are

LA s oot 4
| g kA AT IR IR

VA
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-(SZ cos ¢o - S3 sin ¢o) sin 60
(S2 cos ¢o - S3 sin ¢0) cos Uo

S2 sin ¢, + S3 cos ¢ _

Pcoso +S
(o}

3
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SECTION VI

AIRBORNE FIRE CONTROL ADPPLICATIONS

1. General

In the present application, the gurn-pointing problem is complicated
by the fact that both the gun and the target may be moving. In the air-to-
ground application, the target is stationary in rnany instances, but other-
wise its motion often should be considered. In a situation where the pro-
jectile time of flight is 1 sec, for example, the distance moved by a 60-mph
vehicle is 88 ft, The problem at hand, the fire control problem, involves
predicting the motion of the target so that the hit position may be obtained,
and involves determination of the correct gun-pointing direction to score
a hit on the target. Prediction of target motion is known as kinematic
prediction, whereas the gun-pointing problem is known as ballistic pre-
diction. Kinematic and ballistic prediction are discussed briefly in Sub-

section 2.

In Sections IV and V, equations of metion were deve.zped for a
projectile in flight, but initial conditions were not considered, Initial
conditions will be developed in Subsection 4 for the equations c¢f mo’.lon

deveiuped in Sections IV and V,

Of interest in current applications is the gatling gun, The specifi-
cation of initial! conditions for a projectile fired from such a weapon
mounted in a turret in 2 moving aircrait s complicated, The combined
motions of the rotating barrel cluster, the turret, and the aircraft can
cause errors in calculations if they are aot accounted for. For example,
the distance from the aircraft center of mass to the gun muzzle may be,
say, 10 ft, and the aircraft angular velocity perpendicular to this dis-
tance may be, say, 60 deg,/sec or about 1 rad/sec. The compornent of
projectile velocity due to this angular rotation is, then, 10 ft X 1 rad/sec
= 10 ft/sec. If this component is perpendicular to the muzzle velocity,
which is about 3300 ft/sec for the 20-mm, M56 round, the angular error

due to ignoring this angular motion is 10 ft/sec divided by 3300 ft/sec
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and this equals ,003 rad or 3 mr, Slew rates of the gun will probably
be of the order of 1 rad/sec and the distance from the gimbals to the
gun muzzle may be between 5 and 10 ft, The error due to this cause
may be up to 3 mr also. The M61 gatling gun fires up to 6000 rounds
per minute from six barrels, so the barrel cluster spins at 1000 rota-
tions per minute or 2w X 1000/60 = 105 rad/sec., The distance from the
barrel-cluster axis of rotation and the center of any harrel is 1,877 in,
It follows that the rotating barrel cluster imparts a velocity of 105 rad/sec
times 1,.887/12 ft equals 16.4 ft/sec to the projectile. This amounts to
1000 X 16.4/3300 = 5 mr, Evidently these effects should be accounted
for in initial condition calculations and Subsection 3 contains the neces-=

sary coordinate transformations,

2. Kinematic and Ballistic Prediction

The fire control problem may be divided into two parts: kinematic
prediction and ballistic prediction. To determine the future target path
as a function of time and to find the hit position, given the time of flight,
is the kinematic prediction problem. For the present purposes, it will
be assunied that the target path is a known function of time. Kinematic

prediction in air-to-air applications is the subject of a separate study.

The determination of the correct gun-pointing directicn to score
a hit on the target, given the hit position, is the ballistic prediction
problem. When the gun and/or the target is moving, hits cannot be
scored by pointi- g the gun directly at the target excent in unusual cir-
cumstances. The correct gun-pointing direction is found by an iterative
trial-and-error procedure. A first guess is made for the gun-pointing
direction, a trajectory is calculated, and the miss riastance is used to
correct the gun-pointing direction. If a second calculated trajectory
misses the target, the process is rcpeated., The iterative procedure is

continued until the gun is on target,

Solution of the ballistic prediction problem, as described, implies
knowledge of the hit position, which in tinin implies knowledge of the

" me of flight. But the time of flight to ary point is not known until the
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correct gun-pointing direction to score a hit on that point is determined
and a trajectory l.as been calculated. In other words, the kinematic and

ballistic problems are interdependent and cannot be solved separately,

An iterative solution is available: a first estimate to the time of
flight is chosen, and, given the target path, an estimated hit position is

calculated, Given the estimated hit position, the gun-pointing direction

to score a hit at that point is determined, as described above, and the
time of flight is calculated. The calculated time of flight and the first
estimate to the time of flight are used to correct the estimated hit posi-

tion and the process is repeated until the correct hit position is obtained,

The iterative solution of the kinematic and ballistic prediction prob-
'>ms, as described, requires the calculation of several trajectories.,
The best such procedure will keep the required number of trajectory com-
putations to a minimum. An investigation of algorithms for onboard kine-
matic and ballis’ic prediction is needed, and will not be treated here,

The purpose of this subsection is to point out the existence of this problem.

3. Coordinate Systems and Transformations

In the development of initial-condition equations for a projectile
fired from a turreted gatling gun, five right-handed, rectilinear coor-
dinate systems will be used and they are as follows: (1) an earth-fixed,
inertial system, Sy; (2) a system, SA’ fixed in the aircraft with its origin
at the center of mass, with the X axis along the body longitudinal axis
and directed out the nose, with the Ya axis out the right wing, and with

the z, axis pointed down toward the aircraft floor; (3) a system, S

’
fixedAin the aircraft but with its origin on the axis of the outer turrit
gimbal; (4) a system, SG' attached to the gun frame with its origin on
the axis of the inner gimbal and which rotates about the two gimbal axes;
and (5) a system, SB’ attached to the barrel cluster with its origin on

the gatling gun Larrel-cluster axis of rotation,

Coordinate transformations between these systems are needed so

the projectile velocity, Ho, angular velocity, 50, position,ﬁo, yaw, 60,
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and precession angle, ¢o,may be calculated in inertial space, SI’ at

firing time, To calculate 5, and s the direction of the longitudinal

axis of the projectile, i,e., the boreline of the gun barrel, is needed

in inertial space.

To expedite setting up these transformations, matrix notation will
be used. The appropriate derivations of matrix equations are given in

the appendix. A summary of results follows.

3.1 Matrix Notation - The results of the appendix may be sum-

marized as follows: The transformation of the coordinates of a point P
as observed in space S' into the coordinates of P as observed in space S

is given by the matrix equation
a=c+Ta

where a' represents P as observed in S', the symbol a represents P in
S, c is the position of the origin of S' as observed inS, and T is a 3X 3
matrix which relates the angular orientation of S' to that of S, The

transformation of the velocity, &', of P as observed in S' into the velo-

city, &, of P as observed in S is given by
a=c¢+T@a +qQa')

where ¢ is the velocity of the origin of S' as observed in S, and Q' is
the 3 X 3 matrix representation of the angular velocity of S' relative

to S. Q' may be written as

0, w2, .9,
Qr = Qz" 0 ’ -Qx|
-2, Q, , O

y . %
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where Q_,, Q ,, and 2, are the components of angular velocity of the
S' system with respect to the S system as measured in the S' system,

Q' may be transformed into the S system by the relation

o~

Q = TQ'T

where T is the transpose of T. The column vector representation of Q'

is

however, and the transformation from S'to S is
w= Ty

The column vector notation is obviously easier to use in coordinate

transformations,
A proof that angular velocities add is also included in the appendix.

For example, if w'is the angular velocity of S' with respect to S as
measured in S', and W is the angular velocity of a solid body measured

in S', then

w = T{w'+ w*)

is the angular velocity of the solid body measured in S,

3.2 Subscript Convention - It will be convenient to employ a sub-
Thus, the coordinate

script notation to designate coordinate systems,
space J is designated by SJ and the coordinate space K is SK’ The

angular orientation of the coordinate axes of SJ with respect to SK is

given by
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or, equivalently, the angular orientation of the coordinate axes of SK
with respect to SJ is

~ ~

=T
°K © "KI®J
where e; and ey are row matrices composed of the unit vectors directed
along the axes of the two systems, The transformation from SJ to SK is

b, = Db

K = Pyt Tksby

where bJ is the vector (column matrix) representing the coordinates of

a point P in S_ and by is the vector representing P in S The vector

J K*
bKJ represents the distance, measured in SK’ from the origin, OK, of
SK to the origin, OJ, of SJ.

The velocity transformation is given by

VK = VKJ + TKJ (VJ + QKJbJ)

where VJ z bJ and VK = bK represent the velocity of P in SJ and SK’

r=spectively. VKJ = BKJ is the velocity of OJ with respect to OK as
measured in SK' and QKJ is the angular velocity of SJ with respect to

SK as measured in SJ. The column matrix representation of QKJ is

(L)KJo

3.3 Coordinate Transformations - Coordinate systems and trans-

formations are described, starting with S}3 as shown in Fig, 8. There
is some freedom of choice in the way these systems may be defined, so

definitions were made as convenient,

In SB’ the barrel-cluster system, the x, axis is along the barrel-

B
cluster rotation axis, and the gun muzzle, for any particular barrel at

the time of firing, lies on the axis a distance L from the origin,
g YB g
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The position of the gun muzzle at the time of firing is given by the

matirix

b, = | L (359)

vy = | mpg (3€9)

The velocity of the projectile as measured in SB is parallel to Vg and

is given by

up = VBVM (361)
where VM is the muzzle velocity (a scalar), and the angular velocity of

the projectile as measured in SB is

_ 2

where n is the distance traveled in units of d during one complete rota-
tion of the projectile, Units of n are calibers/turn. It is ¢u: purpose to

transform these four vectors into inertial space, SI'

The gun system, SG' is shown in Fig., 19, where the X axis is
parallel to xg and the Zq axis lies along the inner gimbal axis, The
distance from the origin of SG to the origiu of SB is represented by the

matrix
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The transformation matrix between SB and SG is
1, e |, 0
TGB = 0, cos q;M, -sin¢M (364)

0, sin ¢M’ cos¢M

where ¢ is the angle between VB and the X Vg plane at the time of

fire, and the position of the gun muzzle as measured in SG is

by = bgp * TGB bp (365)
The direction of the gunbore axis as measured in SG is
v = TGB vy (366)
and the angular velocity of the projectile in SG is
wg = TGB (wGB + wB) (367}

where
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g
¢

by
“Gp * Y (368)
0
The projectile velocity in SG is
u; = Tep <4B +QGBbB) (369)
where QGB is the 3 X 3 matrix representation of WeR’
0, 0o, 0
=0, 0., -op (370)
0 5 0

The relation of the gun system, SG’ with respect to the turret

system, S;, is shown in Fig. 20. The distance from the origin of Sy

to that of SG is

,rTG cos A'
brg © 0 (371)

. 1
rTG sin A

The transformation matrix relating vectors in SG and S, is
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cos E'cos A', -sin E'co~ A', -sin A’

TTG = sin E’ , cos E' 0 (372)

cos E'sin A', -sinE'sin A', cos A'

and the position of the gun muzzle as measured in ST is

by = bpo + TTG b (373)

The direction of the gunbore as measured in S’I‘ is

ve = Trgvg (374)
and the angular velocity of the projectile in S'I‘ is
wp = TTG (wTG + wG) (375)
where
[ Aisin g
wrg = ~A'cos E! (376)
E
in SG coordinates, The projectile velocity in ST is given by
up = upg * Trg (ug + QTGbG) (377)
where
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'rTG sin A'

uTG - bTG = A! 0 (378)

Trg €08 A

N~

and

0 . -E' . -A'cos E'
Qo = E' 0 , A'sinE' (379)

f\'cos E', -A'sin E', 0

Since both aircraft space, SA’ and turret space, ST’ are fixed in

the aircraft, the position of the gun muzzle in SA is

by = by + T, pbp (380)

Whereas it is possible to define TAT in terms of orientation angles
relating ST and SA’ this will serve no particular purpose here and

will be omitted, TAT can be defined in any particular application when
the need arises. The vector bAT is the distance from the airciaft center

of gravity to the origin of S and is measured in SA' The direction of

the gunbore 1n SA is

ATY1 (381)

The angular velocity of the projectile in SA is

wp = ooy (382)
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and the projectile velocity in SA is
Up = Tpror (383)
The position of the gun muzzle in inertial space, SI’ is
bI = bIA + T[AbA (384)
where bIA is the position of the aircraft center of mass in SI’ and TIA
is the matrix which relates the relative orientations of SI and SA' Writ-
ing TIA in terms of orientation angles of the aircraft would serve no
purpose here and will be omitted. The direction of the gunbore in SI is
vy F TIA Va (385)
and the angular velocity of the projectile in SI is
w = TIA (sz'f‘wA) (386)
where WA is the angular velocity of SA with respect to SI as measured in
SA and
p
- 387
“IA e (387)
r
The velocity of the projectile in SA is
up = ug, tTp, (uA LRV bA)
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F’ where
0 , -Tr , 1
f Qp =t r , 0, -p (388)
g -q , P . 0
3

I’arameters p, q, and r are the usual symbols for the components of
aircraft ang' lar velocity in the Xps Ypo and N directions, respectively,
and are ass. uned to be known., The matrix Upa is equivalent to the air-

craft velocity vector VA’ i.e.,

’u‘IA = ??A (389)

Usually, the aircraft position matrix, bI.A’ is of no inte :est (only rela-
tive target positicn is needed) aad the origin of SI is taken to be at the
instantaneous position of the aircraft ceater of mass at the time of fire.
Thus

by =0 (390;

and by is the locatizn of the gun muzzle with respect to the aircraft cen-
ter of mass. The aircraft altitude is, of ccurse, assumed to be knowt,
The symbol used in the next subsection for the initial bullet position at
the time of fire is ﬁo’ €0

R = b (391)

Als. the projectile velocity and angular velocities at time of fire are,

respectively,

e (392)

151

I

SRRV




and

-

w, = wp (393)
and the direction of the gunbore or of the shell longitudinal axis is

— —
e = v
o

(394)

Pt

4, Initial Conditions

In Subsection 3, coordinate systems and transformations were
introduced for the calculation of projectile velocity, Eo’ projectile
angular velocity, W gun muzzle position, Ro’ and boreline direction,
e in inertial space at the time of fire. It will be assumed that these
vectors are available (defined in inertial space) so that appropriate
initial conditions may be derived for trajectory computations using the

equations of Sections IV and V.,

4.1 Initial Conditions for the Matrix Formulation ~ Requiied

initial conditions for use with the matrix formulation of the equations
of motion, Section IV, Subsecfion 2, are values at time to for the com-

ponents of u, w, Ro’ and the direction cosine matrix

¢
') t, I3
A = m, m, m
nl n, n,
By definition,
x1 = e0
162
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and from Eq. (159) it is seen that initial values of ¢ 1? 12, and 13 are
defined, Also, initial position Ro is given, Other initial parameters
depend upon the choice of the x, and X3 directions of the X 1 X5 Xg
coordinate system and a convernient initial orientation is that shown in

Fig, 21. It is seen that

;1 /cos B'cosa', cospP'sind, sin /}_f

—-— —

x, |= -sing' cosa', -sinf’sina), cos p' Y

—

\x sin a' ; - cos a' , 0 z

Comparison of this equation with Eq. (159) shows that

=
I

1 cos p'cos a'

Fac
1}

5 cos B'sin a'

=
n

sin g'

and it followe that

cos B' = 1 -4

cos a'

sin a'
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Figure 21
Relation between the X 2%, %y System and the X, Y,Z System
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Given a' and B', the other direction cosines may be calculated and so

. A iz defined, Components of Ho and ;o in the X[ 0X,, X coordinate
system are given by the matrices Au and Awo, respectively, where u
and w, are the inertial space matrix representations of Eo and u-;o’ re-

spectively, This completes the set of initial conditions for the matrix

equation formulation of the six-degree-of-freedom equations.

4,2 Initial Conditions for the Euler Angle Formulation - Initial

conditions for the Euler angle formulation of Section IV, Subsection 3

w
o' Ao’

WRo? W34 bo, ¢o' go, Mg and I;O. For convenience, the origin of the

are specified by values for the following parameters: Q. 90, u

i, < tial space, SI' is taken at the instantaneous position of the gun muz-
zl at the tiine of fire, so initial position coordinates go, Ny and go
are zero, As was explained in Section IV, the £, n, { axes are defined
such that n is vertical, positive up, and the £ axis lies aleng the pro-
jection of Go in the horizontal plane. If the X[» Yo Zj @xes are defined

as shown in Fig. 22, the relation between the two systems is given by

£ sinB', cosB', 0 ;I
n = 0o , 0o , 1 v (395)
T cosB', -sinB', 0 ;I

In this equation, an arrow over a symbol denotes a unit vector in the direc-
tion associated with the symbol, If u_, uy, and u_are the components of Eo in

the x;, yp» and z; directions, respectively,

u = Ju2 + u? +u2 (396)
x y 2z
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4 . YA
i sinB, = 4= (397)
9 [o]
Uy
cos 60 = —-—Xu . (398)
o
where
I 2
uxy = u + u.y (399)
and
Yx
sinB' = T (400)
xy
u
cosB' = .u_Z (401)
Xy

By definition, a = 0. If the components of Eo in the X1 Yo 21 system

are e e and e
x’ y! z’

U ee
cos § = o o __1 (ue tue +ue)) (402)
o u u XX Yyy 2z
o o
and
sind = } 1 - coszﬁ (403)
o o
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An expression for the angle ¢, can be obtained with the aid of Fig. 23.
In the figure, n'is in the vertical plane and is perpendicular to Eo‘
Hence, ¢ is the angle between n' and the projection, ;L' of go in the

n',¢{ plane, From Egq. (395), the components of 20 in the §,1, L coor~

dinate system are

ey = e sin B'+ eY cos B' (-104)
en = e, (405)
e = e cos B'- ey sin B' (406)
Hence,
en, = -eg sin eo + e11 cos 60 (407}
and with
oo JoIvE (109

it follows :hat

sin ¢_ = ?i- 1409)
e t
cos ¢o = ~—éi— (410)

From Fig. 22,
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gt coseo , smeo , 0\ E;

at = -»in@_, cos®_, 0 N Y (411)
} £ o, 0 , 1 4

At firing time, directions 1, J, and K of Fig., 11 coincide with the direc-

tions of £', n', and {' of Fig. 23, Directions A. B, and 3 are related

to the directions of £', n', and {'through the matrix relation

N cos 60 ’ sin&ocos ¢ sinﬁosincbo £

— = s - . ...l

1y sin§ , cos § cos IR sing_ 1 1 (412)
- . —h'

13 0 , - sin ¢o , CcoOS ¢° 4

as can be seen from Figs. 11 and 23, If the components of (:;o in the

Xp Yyr 2 coordinate system are @y (.oy, and wzllt follows from Eqgs. (395)

and (411) that

I , .
/COSGOSIDB + coS eocosB , smeo W

-sineo sinB', -sineo cosB', cos 60 wy (413)
cos B! . -sin B’ . 0 w,

and from Eq. (412)
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) ©aro cosb_ , sin 6, cos¢ , sinb_sin P g 1
wg, | = -sin 60 , COS 60 cos ¢ , cos 60 sing_ wﬂ' (414)
EE 0 , =-sin q)o R cos ¢o Wyt

This completes the set of initial conditions for Euler angle formulation.,

4.3 Initial Conditions for the Approximate Equations - Initial con-

ditions for the approximate equations of Section IV, Subsection 4 are de-
veloped in the same manner as those for the preceding subsection, New

parameters are

P=o0
ﬁ‘:uo
S, = 0
éz=0
S, = 0
é3=o

Parameters s 60, ¢0, 60, and B' are calculated as before.

4.4 Siacci Calculations - No integration is required when the

Siacci equations are used, However a0 B!, and ¢, are needed and

they are calculated as in Subsection 4,2,
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SECTION VII

FURTHER COMMENTS

Whereas this report covers most of the aspects of exterior bal-

listics whick are of interest in airborne applications, some items are

A

excluded because they are adequately covered elsewhere, Subjects
omitted for this reason include numerical integration, and the standard

atmosphere,.

Methods of numerical integration are required since it is believed
to be impossible to obtain a closed-form solution to the projectile equa-
tions of motion. Techniques for numerical integration are well known,
and can be found in many of the standard references such as Ref, 68,
Alternately, specialized methods are applicable and one such method

may be found in Ref. 69,

Since all trajectory calculations involve the air density and the
speed of sound vs altitude, a means of calculating these quantities is
needad. This need is met by Rei. 70 and a convenient model for com-

puter application can be found in Ref, 58,

This report is chiefly concerned with the application of more or
less standard methods to airborne fire control. New methods applicable
to treating windage jump may be found in Section IV, however, and in
Refs, 71 and 72, which contain a simplified set of approximate equations
adaptable to onboard utilization, Methods developed in this report and
in Refs, 71 and 72 essentially comprise the current state of the art in
exterior ballistics for airborne applications. Models developed to date
are applicable to the 20-mm, M56 round., Development of new methods
for treating windage jump may be needed for new rounds, such as the

new 20-mm, 25-mm, and 30-mm rounds under (esvelopment,
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APPENDIX

MATRIX NOTATION

The matrix notation explained here is useful in defining the
coordinate transformations and equations which are necessary for
setting up initial conditions for trajectory computations onboard an
aircraft,

In Fig. 24, et S denote a right-handed, rectangular coordinate
system with origin O and coordinate axes x,y,z. A point in space, as
measured in S, has coordinates x,y, and z and can be represented as

a column matrix

b4
a =y
Z
or as a vector
a = eX t+teyte z
b4 y z

where e_, ey, and e, are unit vectors in the indicated directions, If
X

e = (ex’ ey, ez)

defines a row matrix, then matrix multiplication provides a connection

between the matrix and vector notation for a point in S;

2 = ea (415)
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; in Fig, 24, let S! denote another right-handed, rectangular coordinate
system with origin O' and coordinate axes x',y',z'. If the matrix ¢, or

the vector ¢ = ec, denotes the position of O! as measured in S, the

fu Duut B s N
PR

transformation of the coordinates of a point P, represented by a'inS-,

into the coordinates of P, represented by a in S, is given by the relation

PROTpy

a=c+Ta? (416)

T is a 3 X 3 matrix defining the angular orientation of the S* system with
respect to the S system. Ii e' is the row matrix of unit vectors defining

the x',y', z' directions in S!, that is, if

' e! = (gx" gy" ;z')

G then

et = eT (417)
and also

] e = Tet (418)
where the tilde (~) over a symbol dencting a matrix represents the trans-

pose of that matrix.

(RSN

It is a known property of an orthogonal transformation matrix, T,

that the inverse, T-l, equals the transpose, T. That is

45
-2
=
1t
-

(419)

=

=
2
3

{
M
2l
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where I is the unit matrix. It follows from Eq.(4]16) that

at = T(a.-c)

The relations above define transforma.ions of position coordinates
between S and S!, Egquations for velocity transformations can be obtained
by differentiation with respect to time. Differentiation of Eq. (419), where

a dot denotes time diffe entiation, yields the result
T + ¥T = 0 (420)

With

Q = TT (421)
~ hd
it is seen thatQ' = T T and so Eg. (420) may be written as
Q +d = 0

It follows that the principal diagonal of Q' is zero and Qi'j = -QJ!i, i.e.,

Q' is skew-symmetric, and can be written in the form

z! y
Qf = Qz, , 0 ,-Q;{,
-Qy, , Qx' , 0

It can be shown that the components cf the column matrix R'a' equal the

corresponding components of the vector Q'x a', That is

e'Q'a' = Q'x 3!
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where

Q' = e (St ey, Qy’ te, R,

Hence,{l' is identified as the angular velocity of S' relative to S

measured in S', It follows from Eq. {421) that
T = TQ (422)
Differentiation of b = Tb' yields
5 = Th' + Tb!
whereb = ebis a position vector. Hence, from Eq. (422)
b= Tb'+T@b' = T(b'+Q'b')
or,since e' =eT

eb = e'b'+er @b

This is equivalent to the familiar vector relation

' dB‘) ( dB‘) -
> I3 = g + Q2 Xb
( ¢ iS t St
where subsc.ipts S and S! denocte the spaces in which the velocities are
observed. If e'b' = b represents a point P in S*, then e'b' is the
velocity of P as observed inS', e b is the velocity of P as observed in S,

and e'QQ'b' is the component of velocity of P in S due to the angular

motion of S!,
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Note that if e is constant (i,e., if S is inertial), then from Eqs. (417)

and {422)
e' = e'i‘ = eTQ' = '

If the column vector representation of Q! in S' is

8]

then

w= Tw (423)

is the column vector representing the components of Q' in the S coordinate
system. This follows from the fact that there are vectors and b inS
suchthat@ X b = Q'X b'. Hence,2Qb = e'Q'b' = (eT)Q' (Tb) =
e(TQ! 'T')b and soQ = TQ'T. That Eq. (423) follows from Q= TQ! % can
be shown by comparison of matrix elements,

If U is the matrix representing a transformation from a space S"
to S!', that is, if

a' = Ua"
and if T is the matrix representing a transformation from S*' to S, that is, if

a = Ta!

then
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a = TUa% = Wan
and

W = TU

is the matrix representing a transformation from S" toS. Then

W=TU + TU (424)
From Eq. (422), we may write
W= way
T = T,
and
o - uay

where components of rzw and QU are written with respect to S" and
components of T are written in S' coordinates. Substitution of these

expressions into Eq. (424) yields

wQ TG .U + TUQ.

w T U

or

WQW

T UUQTU t ’I‘USZU

Since W = T and ‘VVV = G T, it follows that

~ o~

- 1
UQWU = QT + UQUJ
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If Wyt Y and wy; are the vector representations of Qw, QT’ and wipr

respectively, then
wa = g + UwU
This may be identified with the vector equations
wy = op oy

This development is a proof that angular velocities add,which is a result

that is not intuitively obvious.
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